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These notes are from the draft CRISTAL User’s Guide for remote sensing of water IOPs, bottom
depth, and bottom type with hyperspectral imagery.  CRISTAL is Comprehensive Reflectance
Inversion based on Spectrum matching and TAble Lookup.

Curtis Mobley May 2011

Appendix A.

Comparison of Terrestrial and Shallow-water Remote Sensing: 

Thematic Mapping Techniques vs. CRISTAL

A.1.  Background

As noted in Section 1.5, the simultaneous retrieval of bathymetry, bottom classification, and
water IOPs is a much more difficult task than thematic mapping to determine land surface type, as
used in terrestrial remote sensing.  In terrestrial thematic mapping, only the type of land surface must
be deduced from an atmospherically corrected image spectrum; there are no confounding influences
by water IOPs and depth. 

In supervised classification the object is to associate a given image spectrum with one of
several pre-determined classes of spectra.  In terrestrial remote sensing these classes are typically
defined as soil, grass, trees, water, pavement, etc.  A thematic map of earth surface features is then
generated by classifying the spectrum from each image pixel into one of the pre-determined classes.

One approach to supervised classification is to compute the mean spectrum for each class and
a corresponding covariance matrix that defines the “size” of each class of spectra about its mean.
The image spectrum is then compared only with the mean spectrum and “size” for each class, and
the image spectrum is statistically associated with the class it is most likely to belong to according
to some metric for distance between the image a mean spectra and user-specified assumptions about
the statistical properties of the class members.  

This appendix considers the terrestrial and oceanic problems in more detail and shows that
the standard terrestrial thematic mapping methodologies are not easily applied to the ocean remote
sensing problem addressed by CRISTAL.

A. 2.  Covariance and Correlation Matrices

rsConsider a collection of N remote sensing reflectance spectra R , each with K wavelengths,

n k rswhich we denote by R (ë ), n = 1,...,N and k=1,...,K (dropping the “rs” subscript on R  for
convenience).  The spectra can be regarded as column vectors:
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where bold type indicates a vector or matrix, and superscript T indicates transpose.  In CRISTAL,
these spectra are the CRISTAL database spectra, N is usually 10  or more, and K is 75 for spectra5

1 2 Kfrom 380 to 750 nm with 5 nm resolution.  Let I = [R(ë ), R(ë ), ..., R(ë )]  be the image spectrumT

that is to be classified.

Now consider subsets of the entire CRISTAL database that define various classes of spectra.

rsTo be specific in the illustrative computations below, we chose four classes of spectra: R  for 10
sand and sediment spectra seen through 0.01 m of water (having IOPs typical of the Bahamas), 10
coral spectra seen through 0.01 m of water, and the same sand and coral spectra seen through 10 m
of the same water.  Figure A.1 shows the individual spectra in these four classes.  To minimize the
array sizes for the printout of Table A.1 below, we subsampled the spectra to wavelengths of 400,
450, ..., 650, 700 nm, so that K = 7.  The subsampled spectra are shown in Fig. A.2.

These spectra are obviously correlated in wavelength.  The amount of correlation between
one wavelength and another is quantified by the covariance and correlation matrices, which are
computed as follows.  Let m = 1,..., M label the class, with M being the total number of classes (here

m m4).  Class m contains N  spectra (here, N  = 10 for each class).  Then the mean or average spectrum
for each class is defined by

where the sum is over the spectra belonging to class m.  In vector notation this is

The mean spectra for the example four classes are shown by the heavy lines in Fig. A.2.

mThe elements of the K×K class covariance matrices Ó  are defined by

m i j mÓ (i,j) expresses the covariance of the class spectra at wavelength ë  with ë ; Ó (i,i) is the variance
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i rsof the class spectra at ë .  For remote-sensing reflectance spectra R  with units of sr , the units of-1

m mÓ (i,j) are sr . If we arrange the spectrum column vectors for class m in a K×N  matrix with the class-2

mean removed,

then the covariance matrix for class m can be compactly written as 

mThe elements of the K×K correlation matrix ñ  for class m are defined from the class covariance

mmatrix Ó  by

Table A.1 shows the class covariance and correlation matrices computed by these equations
for the four classes of spectra shown in Fig. A.2. These specific examples make it clear that

rs rs• R  at one wavelength is highly correlated with R  at another wavelength, as expected.

• The covariance and correlation matrices are different for each class.  Thus these matrices
depend not only on bottom type (sand vs coral) but also on bottom depth (and water IOPs,
not explicitly shown here).  In other words, the wavelength covariances carry information
about both bottom type and water depth and IOPs.



4

rs Fig. A.1.  CRISTAL database R spectra defining the four classes; each class has 10 spectra.

Fig. A.2.  The spectra of Fig. A.1 as resampled at 50 nm intervals for use in the illustrative
computations (light lines).  The heavy lines are the class mean spectra.
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Table A.1.  Covariance and correlation matrices for the four classes of spectra seen in Fig. A.2.
Wavelength 1 (400 nm) is at the upper left and wavelength 7 (700 nm) is at the lower right of each
array.  Units for Ó are sr ; ñ is non-dimensional.-2

Covariance matrix Ó for sand at 0.01 m:

   2.462e-004   3.049e-004   3.612e-004   3.797e-004   4.141e-004   3.994e-004   3.625e-004
   3.049e-004   4.547e-004   5.361e-004   5.447e-004   5.712e-004   5.639e-004   4.569e-004
   3.612e-004   5.361e-004   6.338e-004   6.462e-004   6.787e-004   6.692e-004   5.449e-004
   3.797e-004   5.447e-004   6.462e-004   6.658e-004   7.046e-004   6.912e-004   5.780e-004
   4.141e-004   5.712e-004   6.787e-004   7.046e-004   7.546e-004   7.364e-004   6.340e-004
   3.994e-004   5.639e-004   6.692e-004   6.912e-004   7.364e-004   7.230e-004   6.179e-004
   3.625e-004   4.569e-004   5.449e-004   5.780e-004   6.340e-004   6.179e-004   5.856e-004
 
Correlation matrix ñ for sand at 0.01 m:

   1.000   0.911   0.914   0.938   0.961   0.947   0.955
   0.911   1.000   0.999   0.990   0.975   0.983   0.885
   0.914   0.999   1.000   0.995   0.981   0.989   0.894
   0.938   0.990   0.995   1.000   0.994   0.996   0.926
   0.961   0.975   0.981   0.994   1.000   0.997   0.954
   0.947   0.983   0.989   0.996   0.997   1.000   0.950
   0.955   0.885   0.894   0.926   0.954   0.950   1.000
 
Covariance matrix  Ó for coral at 0.01 m:

   5.793e-005   4.952e-005   6.378e-005   1.143e-004   1.389e-004   1.129e-004   1.552e-004
   4.952e-005   4.442e-005   6.222e-005   1.080e-004   1.299e-004   1.059e-004   1.417e-004
   6.378e-005   6.222e-005   1.070e-004   1.712e-004   2.007e-004   1.655e-004   2.057e-004
   1.143e-004   1.080e-004   1.712e-004   3.010e-004   3.578e-004   2.961e-004   3.775e-004
   1.389e-004   1.299e-004   2.007e-004   3.578e-004   4.432e-004   3.774e-004   4.950e-004
   1.129e-004   1.059e-004   1.655e-004   2.961e-004   3.774e-004   3.300e-004   4.306e-004
   1.552e-004   1.417e-004   2.057e-004   3.775e-004   4.950e-004   4.306e-004   6.132e-004
 
Correlation matrix  ñ for coral at 0.01 m:

   1.000   0.976   0.810   0.865   0.867   0.817   0.823
   0.976   1.000   0.903   0.934   0.926   0.875   0.859
   0.810   0.903   1.000   0.954   0.922   0.881   0.803
   0.865   0.934   0.954   1.000   0.980   0.940   0.879
   0.867   0.926   0.922   0.980   1.000   0.987   0.949
   0.817   0.875   0.881   0.940   0.987   1.000   0.957
   0.823   0.859   0.803   0.879   0.949   0.957   1.000
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Covariance  matrix Ó for sand at 10 m:

   5.792e-007   2.174e-006   3.341e-006   1.880e-006   4.235e-008   2.783e-009   2.886e-012
   2.174e-006   1.006e-005   1.542e-005   8.357e-006   1.805e-007   1.214e-008   1.047e-011
   3.341e-006   1.542e-005   2.369e-005   1.288e-005   2.785e-007   1.872e-008   1.645e-011
   1.880e-006   8.357e-006   1.288e-005   7.086e-006   1.545e-007   1.033e-008   9.641e-012
   4.235e-008   1.805e-007   2.785e-007   1.545e-007   3.409e-009   2.267e-010   2.151e-013
   2.783e-009   1.214e-008   1.872e-008   1.033e-008   2.267e-010   1.517e-011   1.457e-014
   2.886e-012   1.047e-011   1.645e-011   9.641e-012   2.151e-013   1.457e-014   2.776e-017
 
Correlation  matrix ñ for sand at 10 m:

   1.000   0.900   0.902   0.928   0.953   0.939   0.720
   0.900   1.000   0.999   0.990   0.975   0.983   0.626
   0.902   0.999   1.000   0.994   0.980   0.987   0.641
   0.928   0.990   0.994   1.000   0.994   0.996   0.687
   0.953   0.975   0.980   0.994   1.000   0.997   0.699
   0.939   0.983   0.987   0.996   0.997   1.000   0.710
   0.720   0.626   0.641   0.687   0.699   0.710   1.000
 
Covariance  matrix Ó for coral at 10 m:

   1.956e-007   5.520e-007   9.484e-007   9.105e-007   2.255e-008   1.305e-009   1.714e-012
   5.520e-007   1.638e-006   3.068e-006   2.868e-006   7.055e-008   4.100e-009   4.858e-012
   9.484e-007   3.068e-006   7.054e-006   6.135e-006   1.484e-007   8.731e-009   8.282e-012
   9.105e-007   2.868e-006   6.135e-006   5.845e-006   1.424e-007   8.393e-009   9.001e-012
   2.255e-008   7.055e-008   1.484e-007   1.424e-007   3.620e-009   2.197e-010   2.322e-013
   1.305e-009   4.100e-009   8.731e-009   8.393e-009   2.197e-010   1.372e-011   1.359e-014
   1.714e-012   4.858e-012   8.282e-012   9.001e-012   2.322e-013   1.359e-014   2.221e-017
 
Correlation  matrix ñ for coral at 10 m:

   1.000   0.975   0.807   0.852   0.847   0.797   0.823
   0.975   1.000   0.903   0.927   0.916   0.865   0.805
   0.807   0.903   1.000   0.955   0.928   0.888   0.662
   0.852   0.927   0.955   1.000   0.979   0.937   0.790
   0.847   0.916   0.928   0.979   1.000   0.986   0.819
   0.797   0.865   0.888   0.937   0.986   1.000   0.778
   0.823   0.805   0.662   0.790   0.819   0.778   1.000
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A.3. CRISTAL Classification vs. Statistical Classification

One spectrum-matching option in CRISTAL uses a simple Euclidean metric to measure the

nsquared distance (in units of sr ) between an image spectrum I and each R  in the CRISTAL-2

database:

nThe spectrum R  giving the minimum distance of all N database spectra determines the closest

match to the image spectrum I.  Note that this is not a statistical estimate in the sense that no
probability model is involved.  Note also that the image spectrum is being compared with every
spectrum in the CRISTAL database, not just with pre-defined class mean spectra.

In traditional thematic classification, an image spectrum I is compared only with the mean

mspectrum and “size” for each class, as expressed by the class mean and covariance Ó . Here we

m rsuse “size” in the sense that the variances and covariances in Ó  are larger when the spread of R

mspectra is greater.  Inspect, for example, the elements of Ó  for the class of sand at 0.01 m compared
to sand at 10 m, for which the spectra are all much closer together (especially as blue and red
wavelengths) and thus have smaller covariances.  The class covariance matrix defines the size of the
“swarm of points” surrounding the centroid (mean class spectrum) representing the class in K-

rsdimensional R  space.  The image spectrum is assigned to a particular class according to a statistical
model (often based on the assumption of a multivariate normal distribution of the swarm of points)
that determines the probability that the image spectrum belongs to a particular the swarm of points
defining a given class.  The class spectra (K-dimensional swarms of points) generally overlap, so that
an unambiguous, non-probabilistic association of I with a given class is not possible. 

In maximum likelihood estimation (MLE; see Richards and Jia 1996 for an excellent
discussion of this whole business), the distance metric is

m m mwhere |Ó | denotes the determinant of Ó  and denotes the inverse.  |Ó | and  are of course pre-

computed for each class before doing the spectrum matching.  The image spectrum I is assigned to

the class m having the smallest value of .  This metric involves matrix multiplication, which

is computationally expensive, but the number of classes is generally small, so in practice this may
not be a problem.

mIt is often said that the incorporation of Ó  into the distance metric “removes the effect of

mcorrelations between wavelengths.” This interpretation of the effect of Ó  relates to the fact that
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covariance matrices are the foundation of principle component analysis (PCA; see Preisendorfer,
1988 for the definitive discussion of PCA).  In PCA the original independent, physical variables
(here, the wavelengths) are transformed to obtain a new set of (generally unphysical) independent
variables for which the data are uncorrelated.  This transformation can be viewed as a rotation of the
axes of the original, physical data space (here the wavelength axes used for plots in K-dimensional
space) to generate new (generally unphysical) axes for which the data are uncorrelated.

mIf the class covariances are equal (or assumed to be equal), then ln|Ó | is the same for each
class and can be ignored.  The MLE metric then reduces to the Mahalanobis distance metric,

mwhere Ó is the common value of Ó .  The image spectrum I is then assigned to the class m having

the smallest value of . 

We have seen by the specific examples of Fig. A.2 and Table A.1 that the covariance
matrices are different for different classes of the sort that are of interest for ocean remote sensing.

mIndeed, Table A.1 shows that the elements of the Ó  can change by orders of magnitude as a function

mof water depth.  This inequality of the Ó  for different classes precludes use of the Mahalanobis
metric for classes as defined here.  For the retrievals addressed by CRISTAL, MLE (or something
else) would have to be used with a different covariance matrix for each class.

However, it is not at all clear how meaningful classes should be defined for simultaneous
retrievals of bottom type, water column IOPs, and bottom depth.  Should one class be “sand spectra
at 5.25 m depth with a particular set of water absorption, scattering, and backscatter spectra,” and
another class be “sand spectra at 5.25 m depth with the same absorption and scattering spectra but
a different backscatter fraction,” and another class be “sand spectra at 5.50 m with the first set of
IOPs,” and then another class be “sea grass spectra at 7.50 m with yet another set of IOPs,” and so
on?  If so, then the number of classes quickly becomes as large as the number of depths, IOP sets,
and pre-chosen classes of bottom type (sand, coral, grass, etc.).  There could easily be several
hundred classes (a CRISTAL database often has 50-100 bottom depths, several dozen to several
hundred sets of IOPs, and ~100 bottom reflectance spectra).  With such a large number of classes,
the validity of doing traditional thematic mapping becomes uncertain, not to mention the additional
computational costs involved with the matrix multiplications.

Clearly the CRISTAL technique addresses a much more complicated problem than classic
thematic mapping, which corresponds to retrieval of bottom type if there were no water present—i.e.,
no simultaneous retrieval of depth and IOPs.  Because of the greater complexity of the present
retrieval problem, and because of the difficulty in defining meaningful classes, CRISTAL does not
use statistical classification techniques such as MLE.  CRISTAL does not compare an image
spectrum to a class mean spectrum.  CRISTAL compares an image spectrum to every spectrum in
its database, and finds the closest match by the Euclidean (or some other) metric, which is



9

rsappropriate in this case.  In a manner of speaking, each CRISTAL database R  spectrum is a separate
class corresponding to a particular depth, bottom reflectance spectrum, and set of IOPs.  In such a
situation (only one member in each class) the covariance matrix is undefined. 
 

Moreover, for the present problem it is not even desirable to remove the effects of
wavelength correlations, as can be done with the MLE or Mahalanobis metrics, because the
wavelength correlations carry information that is critical to separating depth and IOPs effects from
bottom type effects.

The CRISTAL approach is therefore to avoid defining predetermined classes and to find the
closest match from the entire database.  This gives the highest possible resolution of retrievals.  Thus
for example, CRISTAL retrieves a particular bottom reflectance spectrum (which represents a
particular bottom type), not just a generic bottom type such as sand or coral. If the user wishes to
later group the particular spectra for the retrieved bottom types into broader classes such as corals
vs. sediments, or to group the retrieved IOPs into low, medium, and high absorption bins, for
example, then that is easily done from the full-resolution retrieval.

We have investigated numerous metrics for spectrum matching, include MLE and
Mahalanobis metrics with various class definitions.  The metrics that give best CRISTAL results are
the Euclidean, Manhattan, and Correlation metrics discussed in Section 3.1.

In conclusion, CRISTAL does not perform statistical classification in the usual sense,
for good reason, and the use if the Euclidean metric as the default for matching image and database
spectra is well justified.


