Syllabus for Sea-Bird Electronics Training for Data Collection in the Ocean

Class starts at 9:00 AM

MODULE 0: WELCOME TO SEA-BIRD

- 1. Introduction
- 2. Oceanographic basics
 - What is a profile and how is it used?
 - Oceanographic terms and commonly used parameters

MODULE 1: PROFILING PRODUCTS

- 1. Real-time systems
 - SBE 9/11*plus*
 - SBE 49
- 2. Internally recording instruments
 - SBE 19, 19plus, 19plus V2 Physical configuration and sampling rates
 - SBE 25, 25plus Physical configuration and sampling rates
- 3. Memory and battery endurance for internally recording instruments
 - Memory capacity related to number of sensors logged
 - Battery endurance Power consumption of various sensors
- 4. Modular sensors and sensor integration with Sea-Bird CTDs
- 5. Real-time telemetry for internally recording instruments (SBE 19, 19plus, 19plus V2, 25, 25plus) and SBE 49
 - SBE 36 deck unit and PDIM
- 6. Water sampling equipment SBE 32 Carousel Water Sampler and SBE 55 ECO Water Sampler
 - SBE 11 plus deck unit for real-time control of Carousel with SBE 9 plus CTD
 - SBE 17plus memory and power module for autonomous sampling with Carousel and SBE 9plus CTD
 - SBE 33 deck unit for real-time control of Carousel or ECO with SBE 19, 19plus, 19plus V2, 25, or 25plus CTD
 - Auto Fire Module (AFM) for autonomous sampling with SBE 19, 19plus, 19plus V2, 25, or 25plus CTD or SBE 50 Pressure Sensor
 - Autonomous sampling with ECO and SBE 19, 19plus, 19plus V2, 25, or 25plus CTD
- 7. Autonomous instruments
 - SBE 41 and 41cp
- 8. Activity: Install Seasoft and course data

MODULE 2: SETTING UP AND ACQUIRING DATA

- 1. SeatermV2, user interface for internally recording instruments
 - Selecting an instrument
 - Communications
 - Instrument status
 - Zero conductivity frequency
 - Activity: Connect computer to SBE 19plus V2, Set it up for data collection and collect data
 - Cast headers
 - Upload
 - Headers
 - Activity: Upload data to your computer from SBE 19plus V2
 - Capturing ASCII data

- 2. Seasave, real-time data collection for SBE 19, 19plus, 19plus V2, 25, 25plus, 49, and 9plus/11plus
 - Seasave and configuration (.xmlcon or .con) file number and type of sensors, calibration coefficients
 - Activity: Create .xmlcon file for SBE 19plus V2
 - Seasave displays
 - Displaying archived data
 - Activity: Set up displays, and display bench cast data from SBE 19plus V2
 - Other Seasave configuration items
 - Serial ports
 - Real-time water sampling
 - TCP/IP ports
 - Miscellaneous
 - Serial data output
 - Shared file output
 - Mark variable selection
 - TCP/IP output
 - SBE 11*plus* alarms
 - Remote display (SBE 14)
 - PC alarms
 - Header form and prompts
 - Saving setup
 - Acquiring real-time data
 - Seasave file types
 - Using internally recording instruments for real-time applications
 - Instrument preparation for real-time data collection
 - Water sampling
 - Activity: Use Seasave to take a real-time cast from SBE 19plus V2
 - Setting up Auxiliary Sensors; WET Labs examples
 - Activity: Activity: Use Seasave to plot raw example data set
- 3. SBE Data Processing post-processing software
 - Data Conversion from raw data to engineering units
 - Sea Plot
 - Activity: Convert and plot data in SBE Data Processing

MODULE 3: DATA CONVERSION AND PLOTTING

- 1. Data processing introduction
 - Activity: Use Seasave to plot raw example data set
 - Data processing flow chart
 - SBE Data Processing, user interface
- 2. Conversion to scientific units
 - Data Conversion uses input .con file and raw data (.hex or .dat) file to convert to scientific units
 - File selection
 - Data setup and output variable selection
 - Cast header view
 - Output (.cnv) file format
 - Water sampler output (.ros) file format
 - Activity: Use Data Conversion to convert pressure, temperature, and conductivity
- 3. Displaying *converted* data: Sea Plot
 - Basic plots
 - Multiple files: overlay plots
 - Temperature Salinity (TS) plots
 - Activity: Use Sea Plot on example data set

MODULE 4: WATER SAMPLING AND DEPLOYMENT

- 1. Water Sampling introduction
 - SBE 32 Carousel and SBE 55 ECO Water Samplers
 - Autonomous sampling with Carousel and internally recording instruments AFM or 17plus V2
 - AFM (with SBE 19, 19*plus*, 19*plus* V2, 25, or 25*plus* CTD or SBE 50 Pressure Sensor) close on downcast, upcast, when stationary, or elapsed time
 - SBE 17*plus* V2 (with SBE 9*plus* CTD) close on upcast
 - Autonomous sampling with ECO and internally recording instruments
- 2. SeatermAF V2, user interface for autonomous sampling
 - CTD communications
 - Sampling protocols close on downcast, upcast, when stationary, or elapsed time
- 3. Real-time data and water sampling with internally recording instruments SBE 33 Deck Unit
 - Cabling and capabilities of SBE 33 (use with SBE 19, 19plus, 19plus V2, 25, or 25plus CTD)
- 4. Deployment issues
 - Cabling real-time system, lab to winch to CTD
 - Grounding considerations for real-time system
 - Instrument plumbing
 - Be neat!
 - Why and how long should I soak?
 - Using CTD in cold places
- 5. Correlating CTD data with water samples
 - Extracting CTD data for water samples with Data Conversion .ros file
 - Summarizing water sample data with Bottle Summary .btl file
 - Activity: Create .ros file and .btl file

MODULE 5: MISCELLANEOUS APPLICATIONS

- 1. Fresh water applications pump turn-on considerations, specific conductance
- 2. Sound velocity direct measurement vs calculation from CTD data
- 3. Adding data to your CTD data at the deck unit
 - NMEA interface for Latitude and Longitude
 - Surface PAR
- 4. Supporting custom auxiliary sensors user-defined polynomial equations
- 5. Adding 9600 baud data channel or RS-232 serial output interface to 911 plus
- 6. Thermosalinographs
 - SBE 21 T and C, auxiliary sensors, remote T, GPS data, memory
 - SBE 45 T and C only, no memory, remote T and GPS data with use of optional interface box
 - Cabling and setup
 - Calibration and maintenance recommendations
 - Example installation and data

MODULE 6: MAKING MEASUREMENTS IN THE OCEAN

- 1. How a sensor works
- 2. Sensor response times
 - Temperature
 - Conductivity
 - Pressure
 - Dissolved Oxygen SBE 43
- 3. Interaction of profiling rate and sampling rate on resolution
 - SBE 9/11*plus*
 - SBE 25, 25plus
 - SBE 19, 19plus, 19plus V2

- 4. Activity: Compare resolution for data from same cast for SBE 19 and SBE 25
- 5. Coordinating measurements in time and space
 - Salinity is function of T, C, and P, and must be calculated on measurements from same parcel of water
 - Coupling T and C measurement TC Duct and pump
 - SBE 911 plus measurement sequence and alignment of data
 - SBE 25 and 25 plus measurement sequence and alignment of data
 - SBE 19, 19 plus, and 19 plus V2 measurement sequence and alignment of data
 - Response to step change

MODULE 7: GETTING THE HIGHEST ACCURACY DATA, PROFILING

- 1. Care of sensors in the field and sensor drift characteristics
 - Temperature
 - Conductivity
 - Results of cell fouling
 - Cell cleaning
 - When cells go bad
 - Zero frequency
 - Dissolved oxygen
 - pH
 - Pressure
- 2. Converting sensor output to engineering units
 - How calibration maps sensor response to engineering units
 - Calibration procedures baths, primary standards, fixed point cells
 - Temperature
 - Conductivity
 - Pressure
 - Dissolved oxygen
 - pH
 - Calibration results: Calibration sheets, what is on them
- 3. Using calibrations to adjust data
 - Pre-deployment and post-deployment calibrations used to adjust data
 - Temperature
 - Conductivity
 - Dissolved Oxygen
- 4. Seawater calculator SeaCalc III
- 5. Activity: Correct T and C using pre- and post-cruise calibrations

MODULE 8: GETTING THE HIGHEST ACCURACY DATA, PROFILING (continued)

- 1. Field calibrations, pressure and temperature
 - Pressure, offsets on deck
 - Temperature, reversing thermometers
- 2. Field calibrations, discrete water samples for conductivity and dissolved oxygen
 - Sample collection strategies, checking for leaks, what part of water column should we use
 - Conductivity, laboratory salinometer determination of discrete water samples
 - Dissolved oxygen, Winkler titration of discrete water samples
- 3. Activity: Correct conductivity with water samples

MODULE 9: ADVANCED DATA PROCESSING *OR* WHY DOESN'T MY DATA LOOK LIKE THE EXAMPLES IN CLASS?

- 1. Dynamic errors
 - Response time for temperature
 - Response time for conductivity: dependent on flow speed and thermal mass
 - Errors in salinity: not sampling same water parcel, mismatched T & C response times, thermal mass of conductivity cell, ship heave
- 2. Processing modules for correcting for dynamic errors
- 3. Activity: Convert data
- 4. Filtering pressure to remove digitization effects and account for conductivity time constant: Filter
 - Cause and effect of digitization noise
 - Manipulating data to compensate: Filter
- 5. Discussion of sensor alignment, what it means for T, C, P, DO
 - Diagrams of cause of misalignment
 - Plots showing effect of misalignment on salinity; discussion of spiking
 - Manipulating data to remove misalignment: Align CTD
 - Examples of T and C alignment
 - Activity: Correct alignment of conductivity in example data
 - Causes of misalignment of Dissolved Oxygen data
 - Examples of DO alignment
 - Activity: Correct alignment of DO in example data
- 6. Correcting for conductivity cell thermal mass
 - Causes and example
 - Manipulating data to compensate for cell thermal mass: Cell Thermal Mass
 - Activity: Correct for cell thermal mass in example data
- 7. Data artifacts induced by ship heave
 - Diagram and explanation showing error when instrument package slows or stops
 - Removing loops and wild points in data: Loop Edit and Wild Edit
 - Activity: Remove loops in example data
- 8. Ancillary data processing
 - Section: retrieve portion of a cast
 - Split: separate upcast from downcast
 - Window Filter: filter data with a variety of shapes
- 9. Bin averaging data
 - Bin Average protocols pressure interpolated or not interpolated
 - Surface bin
 - File selection and data setup
 - Output (.cnv) file format
 - Activity: Use Bin Average on example data set
- 10. Data processing tips
- 11. Complete processing flow chart
 - 911*plus*
 - 19plus or 19plus V2
 - 25*plus*
- 12. Batch processing
 - Automating processing of large sets of cast data
 - Activity: Batch process example data sets

MODULE 10: MOORED INSTRUMENTS

- 1. Instrument types and capabilities
 - SBE 16, 16plus, 16plus V2, 16plus-IM, and 16plus-IM V2 SEACAT C-T (pressure optional) Recorder
 - SBE 37 (SM, SMP, SMP-IDO, SMP-ODO, SI, SIP, SIP-IDO, SIP-ODO, IM, IMP, IMP-IDO, IMP-ODO) MicroCAT C-T (pressure optional) Recorder
 - SBE 43 and 63 Dissolved Oxygen Sensors
 - SBE 39, 39plus, and 39-IM Temperature (pressure optional) Recorder and SBE 56 Temperature Logger
- 2. Inductive modem telemetry mooring diagram, instrument and surface coupling, data transmission
- 3. Adding a modem to other manufacturer's instruments
 - SBE 44 or Underwater Inductive Modem Module (UIMM) link to instrument with serial interface
 - Sea-Bird OEM components to convert serial-output instruments to IM operation
- 4. Clock drift
- 5. Memory capacity memory size and scan length for each instrument
- 6. Battery Endurance
 - Calculating current draw
 - Battery endurance issues: temperature and shelf life
 - Battery type, capacity, and endurance examples for each instrument
 - Activity: Calculate battery endurance for SBE 37-SM
- 7. Sampling theory: sampling rate and resolution

MODULE 11: SETUP OF MOORED INSTRUMENTS

- 1. Setting up a moored instrument: Seaterm and SeatermV2 user interface
 - Setting communication parameters
 - Checking calibration coefficients and instrument status
 - Setting date and time
 - Setting pump operation parameters
 - Upload file types and upload choices
- 2. Activity: Set up SBE 37-SM, collect data, upload, and check data
- 3. Converting sensor output to scientific units
 - How each instrument stores and reports data
 - Conversion utilities for SBE 37 and 39
- 4. Headers and data formats
- 5. Activity: Convert data, derive salinity and sigma-t, and plot results with Sea Plot
- 6. Setting up Auxiliary Sensors; WET Labs examples
- 7. Preparing for deployment
 - Anti-foulant paints
 - Install fresh batteries
 - Check connectors and cables
 - Clear memory of old data and set up instrument
 - Check list example
 - Verify functionality
 - SBE 16plus and 16plus V2 : pump operation and dissolved oxygen sensors
 - Clean data collection
 - Plumbing
 - Start logging: now or later?
 - Deploying in cold places
 - Inductive modem systems:
 - Set instrument ID
 - Set up entire system: buoy, buoy computer, communication link to shore
 - Review commands for requesting data
 - Troubleshooting

MODULE 12: GETTING THE HIGHEST ACCURACY DATA, MOORED

- 1. Care of sensors in field
 - Temperature
 - Conductivity
 - Results of cell fouling
 - AF24173 Anti-Foulant Devices: TBTO
 - Pumping
 - Dissolved Oxygen
 - Results of fouling
 - Membrane rinsing
- 2. Pre-deployment and post-deployment calibrations used to adjust conductivity calibration
 - Example
- 3. Temperature and conductivity drift
 - Conductivity positive drift
- 4. Correcting data with field comparisons conductivity example
- 5. Correcting Dissolved Oxygen data for fouling
- 6. Post recovery maintenance
 - Cleaning
 - Checking zero frequency
 - Storage

MODULE 13: WAVES AND TIDES - SBE 26 AND 26PLUS SETUP AND DEPLOYMENT WITH SEASOFT FOR WAVES (REFERENCE ONLY; NOT COVERED IN CLASS)

MODULE 14: WAVES AND TIDES - DATA PROCESSING WITH SEASOFT FOR WAVES (REFERENCE ONLY; NOT COVERED IN CLASS)

MODULE 15: TROUBLESHOOTING

- 1. Real-time systems
 - 911*plus*
- 2. Deployment problems pump, sensors with long turn-on transients, wet end termination, slip ring
- 3. Data problems
 - .xmlcon or .con file doesn't match instrument setup
 - Incorrect calibration coefficients
 - Data scan mismatch
- 4. NMEA problems
 - NMEA standard format
 - Communication parameters
 - Sea-Bird NMEA simulation program
- 5. SBE 32 Carousel Water Sampler
- 6. SBE 33 or 36 Deck Unit
- 7. Opto / NMEA Box
- 8. Internally recording instruments
 - Communication problems batteries, cable, comm port
 - Reset switch
- 9. Auto Fire Module (AFM)
- 10. Activity: Diagnose cause of an instrument's damage, Use Seasave to look at and diagnose data problems

MODULE 16: THE CRUISE - BEFORE, DURING, AND AFTER

- 1. Pre-cruise equipment checks
- 2. Verify functionality
- 3. Shipping precautions
- 4. Moored instruments and anti-foul paint
- 5. Tools and spare parts
- 6. Care and Maintenance during cruise
- 7. Flooded instruments
- 8. Care and maintenance after cruise
- 9. Care and maintenance after moored instrument recovery
- 10. Storage after recovery

MODULE 17: BASIC MAINTENANCE OF SEA-BIRD EQUIPMENT

- 1. Annual maintenance
- 2. Lubricating hardware
- 3. Electrostatic discharge precautions
- 4. Replacing O-rings and seals
- 5. Pump maintenance
- 6. Replacing bulkhead connectors

MODULE 18: RETURNING INSTRUMENTS TO SEA-BIRD FOR SERVICE

- 1. Sea-Bird contact information
- 2. Information needed by Sea-Bird
- 3. Battery shipping regulations
- 4. Service scheduling and authorization
- 5. Service package
- 6. Service turn-around times