

Revised February 2011

Phone: +1 425-643-9866

E-mail: seabird@seabird.com Web: www.seabird.com

Fax: +1 425-643-9954

## **APPLICATION NOTE NO. 11 General**

## **PAR Light Sensors**

Sea-Bird has several application notes dealing with PAR sensors from various manufacturers; this application note provides an overview of PAR measurements and units, and is applicable to all PAR sensors.

**PAR** is an abbreviation for **P**hotosynthetically **A**vailable **R**adiation (also called **P**hotosynthetically **A**ctive **R**adiation). Solar radiation reaching Earth's surface is a mixture of ultraviolet light, visible light, and near-visible infrared radiation. All of this radiation conveys heat; the portion between approximately 400 and 700 nm wavelength can be captured and used by photo-autotrophs (organisms capable of obtaining energy directly from sunlight), and is called PAR.

Irradiance is the flux of solar radiation incident on a surface per unit time per unit area and is reported in units of energy content (Watts/m<sup>2</sup>) or photon content (quanta/m<sup>2</sup> sec or  $\mu$ Einsteins/m<sup>2</sup> sec). Conversion from energy to photon content can be made with Planck's equation, provided that the light wavelength is known. The energy of a photon is related to its wavelength as follows:

```
E = hc / λ

where

h = Planck's constant (6.626 x 10<sup>-34</sup> Joules sec)

c = speed of light (2.998 x 10<sup>-8</sup> m/sec)

λ = wavelength (m)
```

This equation provides the energy for a single wavelength. For a broad spectrum PAR sensor, a wavelength of approximately  $550 \text{ m} (550 \text{ x } 10^{-9} \text{ m})$  is typically used for the conversion.

"For marine atmospheres with sun altitudes above 22 degrees, the quanta/watt ratio for the region 400 to 700 nm is 2.77 x 10<sup>18</sup> quanta/sec/Watt to an accuracy of plus or minus a few percent." This quote and further discussion of the relationship of quanta to Watts in the water column is found in Smith and Morel (1974) Limnol. Oceanogr. 19(4):591-600.

**E** (at 550 nm) = hc /  $\lambda$  = (6.626 x 10 <sup>-34</sup> Joules sec) \* (2.998 x 10 <sup>8</sup> m/sec) / (550 x 10 <sup>-9</sup> m) = 3.61 x 10 <sup>-19</sup> Joules (Note: 1 / 3.61 x 10 <sup>-19</sup> = 2.77 x 10 <sup>-18</sup> quanta/sec/Watt, the value quoted in the above reference.)

Application notes for underwater PAR sensors (11Chelsea, 11Licor, 11QSP-L, and 11QSP-PD) and surface PAR sensors (11S and 47) describe how to enter coefficients from the manufacturer's calibration in the CTD configuration (.con or .xmlcon) file to provide SEASOFT output in μEinsteins/m²-sec. To calculate irradiance in other units:

| To convert to:                  | For <i>Underwater</i> PAR Sensors, set Multiplier to:                                        | For Surface PAR Sensors, multiply calculated Conversion factor by: |
|---------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| μEinsteins/m <sup>2</sup> ·sec  | 1.0                                                                                          |                                                                    |
| μEinsteins/cm <sup>2</sup> ·sec | $(1.0) / (100 \text{ cm/m})^2 = 1 \times 10^{-4}$                                            |                                                                    |
| Einsteins/m <sup>2</sup> ·sec   | $(1.0) / (1 \times 10^{-6} \mu \text{Einsteins/Einstein}) = 1 \times 10^{-6}$                |                                                                    |
| Einsteins/cm <sup>2</sup> ·sec  | $(1 \times 10^{-6}) / (100 \text{ cm/m})^2 = 1 \times 10^{-10}$                              |                                                                    |
| quanta/m <sup>2</sup> ·sec      | $(1 \times 10^{-6}) * (6.022 \times 10^{23} \text{ quanta/Einstein}) = 6.022 \times 10^{17}$ |                                                                    |
| quanta/cm <sup>2</sup> ·sec     | $(6.022 \times 10^{-17}) / (100 \text{ cm/m})^2 = 6.022 \times 10^{-13}$                     |                                                                    |
| Watts/m <sup>2</sup>            | $(6.022 \times 10^{-17}) / (2.77 \times 10^{-18} \text{ quanta/sec/Watt}) = 0.2174$          |                                                                    |
| Watts/cm <sup>2</sup>           | $(0.2174) / (100 \text{ cm/m})^2 = 2.174 \text{ x } 10^{-5}$                                 |                                                                    |
| μWatts/m <sup>2</sup>           | $(0.2174) * (1 \times 10^{-6} \mu \text{Watts/Watt}) = 2.174 \times 10^{-5}$                 |                                                                    |

*Note:* 1 *Einstein* = 1 *mole*  $(6.022 \times 10^{23})$  *of photons* 

1 Watt =  $2.77 \times 10^{-18}$  quanta/sec

## **Notes:**

- In our SEASOFT V2 suite of programs, edit the CTD configuration (.con or .xmlcon) file using the Configure Inputs menu in Seasave V7 (real-time data acquisition software) or the Configure menu in SBE Data Processing (data processing software).
- Multiplier can also be used to scale output for comparing the shape of data sets taken at disparate light levels. For example, a multiplier of 10 would make a 10 μEinsteins/m²-sec light level plot as 100 μEinsteins/m²-sec.

## **Application Note Revision History**

| Date          | Description                                                                                                           |
|---------------|-----------------------------------------------------------------------------------------------------------------------|
| -             | Initial release.                                                                                                      |
| May 2007      | Incorporate Seasave V7.                                                                                               |
|               | Eliminate discussion of DOS software.                                                                                 |
| February 2010 | Change Seasoft-Win32 to Seasoft V2.                                                                                   |
|               | Add information on .xmlcon configuration file.                                                                        |
|               | Update address.                                                                                                       |
| February 2011 | Correct units for h = Planck's constant (6.626 x 10 <sup>-34</sup> <b>Joules/sec</b> corrected to <b>Joules sec</b> ) |