

(541) 929-5650 Fax (541) 929-5277 www.wetlabs.com

Volume Scattering Function Calibration Sheet

Date 3/18/2003	Customer	Emmanuel Boss		
Wave 440nm	S/N#	vsf-005b	Tech	K.C.

- 1. From the design, we compute the weighting function for each scattering angle for each light source by numerical interaction of the sample volume elements.
- 2. We determine the volume scattering functions for the calibration particles by integrating the MIE scattering functions over the size distribution.
- 3. We compute the portion of the total scattering coefficient for the calibration particles represented by the angular weighting functions. We then divide this by the solid angle in steradians represented by the weighting factors to get $\beta(\theta)/b$ as shown below:

$\beta(\theta)/b$ for 1.96 Micron Diameter Beads

	٧	√avelength	
Angle Centroid	440	530	650
100	0.00786	0.00500	0.00287
125	0.01079	0.00528	0.00257
150	0.00864	0.00354	0.00167

4. For each instrument, we obtain the scattering signals and the attenuation coefficients for a dilution series of 2-micron beads. The results for this instrument follow:

			Counts	
	Cp440	100	125	150
Dark counts		123.563	128.063	166.094
Clean water	0.014	129.419	167.065	150.774
	0.168	149.133	177.733	214.367
	0.263	162.167	202.333	252.667
	0.395	180.000	236.563	304.938
	0.745	231.516	333.161	457.968
	1.129	283.633	438.433	617.567
	1.510	337.968	540.065	768.839
	1.904	393.906	646.000	929.094

5. It is assumed that Cp is equal to b for the calibration particles. We obtain b/counts by linear regression.

100 150 slope, intercept 0.002404 -0.346900 0.007134 -0.898658 slope, intercept 1.43E-05 0.00639492 4.24487E-05 0.00943685 0.999824 0.00798946 0.999823 0.00801421 125 0.003813 -0.538067 slope, intercept 0.000128031 0.04194394

r	0.994396 0.045098		
6. Multiplyi	ng b/counts by β(θ)/b yields:	7. Dividing intercept by slope yields	
•	β(θ) /counts	Dark Counts	
100	5.607E-05	123.563	
125	4,115 E -05	128.063	
150	2.077E-05	166.094	

To obtain $\beta(\theta)$, subtract the zero offset from the counts obtained, then multiply by $\beta(\theta)$ /counts from the table above.

8. The test also provides a measure of the inherent noise level of the instrument from the short term RMS deviation from the average number of counts. We translate this into the resolution of $\beta(\theta)$ (minimum detectable signal change) in units of 1/m. steradians).

Noise (co	unts)	Resolution (1/[m. ster])
100	1.7964	1.01E-04
125	1.9006	7.82E-05
150	1 9268	4 00F-05

150

Volume Scattering Function Calibration Sheet

Date: 4/25/02 Serial # VSF-006G

Wavelength: 530 nm Tester: Dan

Test Description

- 1. From the design, we compute the weighting function for each scattering angle for each light source by numerical integration of the sample volume elements.
- 2. We determine the volume scattering functions for the calibration particles by integrating the MIE scattering functions over the size distribution.
- 3. We compute the portion of the total scattering coefficient for the calibration particles represented by the angular weighting functions. We then divide this by the solid angle in steradians represented by the weighting factors to get $\beta(\theta)/b$ as shown below:

$\beta(\theta)$ /b for 1.96 Micron Diameter Beads

Wavelength Angle Centroid 440 530 650 100 0.00786 0.00500 0.00287 0.01079 125 0.00528 0.00257 150 0.00864 0.00354 0.00167

4. For each instrument, we obtain the scattering signals and the attenuation coefficients for a dillution series of 2 micron beads. The results for this instrument follow:

			Counts	
	Cp530	100	125	150
Dark Counts		128.600	127.716	132.900
Clean water	0.004	133.250	135.233	150.516
	1.202	326.950	364.166	524.433
	2.285	502.766	570.966	856.516
	3.397	682.050	780.750	1193.483
	4.507	861.516	990.500	1525.683

5. It is assumed that Cp is equal to b for the calibration particles. We obtain b/counts by linear regression.

	100			150	
slope, intercept	0.006183	-0.820484	slope, intercept 0.003	2752	-0.505311
	3.43245E-06	0.001932	1.58	1E-05	0.015464
r	0.999999	0.001967	r 0.999	9301	0.0171
	125				
slope, intercept	0.005266	-0.713561			
	9.47168E-06	0.006091			
r	0.999990	0.006372			

	Multiplying b/cou	nts by	$\beta(\theta)$ /b yields:	7. Dividing intercept by slope yields
		β(θ) /coun	ts	Dark Counts
ı	100	3.091E-05		128.600
	125	2.780E-05		127.716
	150	1.159E-05		132.900
'	To obtain	$\beta(\theta)$, subt	act the zero offset	from the counts obtained,
	then multiply by		$\beta(\theta)$ /counts from the	ne table just above.

8. The test also provides a measure of the inherent noise level of the instrument from the short term RMS deviation from the average number of counts. We translate this into the resolution of $\beta(\theta)$ (minimum detectable signal change) in units of 1/(m. steradians).

N	oise (counts)	Resolution (1/(m. ster))
100	0.9014	2.79E-05
125	0.8105	2.25E-05
150	0.7718	8.95E-06

Volume Scattering Function Calibration Sheet

Date:

12/19/00

Serial # VSF004R

Wavelength:

650 nm

Tester: Christian

Test Description

- 1. From the design, we compute the weighting function for each scattering angle for each light source by numerical integration of the sample volume elements.
- 2. We determine the volume scattering functions for the calibration particles by integrating the MIE scattering functions over the size distribution.
- 3. We compute the portion of the total scattering coefficient for the calibration particles represented by the angular weighting functions. We then divide this by the solid angle in steradians represented by the weighting factors to get β(θ) /b as shown below:

$\beta(\theta)$ /b for 2 Micron Diameter Beads

	Wavelength				
Angle Centroid	440	530	850		
100	0.0076	0.0054	0,0030		
125	0.0115	0.0060	0.0028		
150	0.0095	0.0040	0,0017		

4. For each instrument, we obtain the scattering signals and the attenuation coefficients for a dillution series of 2 micron beads. The results for this instrument follow:

			Counts	٠,
	Cp650	100	125	150
Aìr		135,1667	138.7619	145.5714
Clean water	0.008	170.1636	165.8909	189.6909
	1.667	483.5082	425.3934	603.5738
	3,669	888.5667	758.3833	1168.383
	5.047	1171.517	986.5	1520.767
	6.54	1494.783	1241.717	1950.55

5. It is assumed that Cp is equal to b for the calibration particles. We obtain b/counts by linear regression.

slope, intercept	100 0.004930 -0.76 6.68477E-05 0,06 0.999449 0.07	4529 4.741E-05	
slope, intercept	125 0.006063 -0.95 5.14423E-05 0.04 0.999784 0.04	1783	

	6. Multiplying b/cor	unts by	β(θ) /b yields:	7. Dividing intercept by slope yields	
		β(θ) /coι	unts	the zero offset	
	100	1.479E-05		155	
l	125	1,698E-05	•	157	
	150	6,295 E- 06		172	
	To obtain	β(0) , su	btract the zero offset	from the counts obtained,	
L	then multiply by		$\beta(\theta)$ /counts from the	ne table just above.	

8. The test also provides a measure of the Inherent noise level of the instrument from the short term RMS deviation from the average number of counts. We translate this into the resolution of (minimum detectable signal change) in units of 1/(m, steradians).

Not	se (counts)	Resolution (1/(m. ster))	
100	0.889	1.31E-05	
125	0.854	1.45 E- 05	
150	0.833	5,24 E -06	