PO Box 518 620 Applegate St. Philomath, OR 97370

(541) 929-5650 Fax (541) 929-5277 www.wetlabs.com

Scattering Meter Calibration Sheet

10/8/2008		
Wavelength: 700	PRECAL	S/N FLNTU-873

Use the following equation to obtain either digital or analog "scaled" output values:

$\beta(\theta_c) \text{ m}^{-1} \text{ sr}^{-1} = \text{Scale Factor} \times (\text{Output - Dark Counts})$				
 Scale Factor for 700 nm 	=	3.844E-06 (m ⁻¹ sr ⁻¹)/counts	3.135E-03 (m ⁻¹ sr ⁻¹)/volts	
Output	=	meter output counts	meter output volts	
 Dark Counts 	=	47 counts	0.0760 volts	
Instrument Resolution	=	1.0 counts 0.5 mV	3.84E-06 (m ⁻¹ sr ⁻¹)	

Definitions:

• Scale Factor: Calibration scale factor, $\beta(\theta_c)$ /counts. Refer to User's Guide for derivation.

• Output: Measured signal output of the scattering meter.

• **Dark Counts**: Signal obtained by covering detector with black tape and submersing sensor in water. Instrument Resolution: Standard deviation of 1 minute of collected data.

1. For each scattering centroid angle (θc), we compute the weighting function W(θ , θc), by numerical integration of sample volume elements according to the sensor geometry.

2. We determine scattering phase functions, $\beta(\theta,\lambda)/b(\lambda)$, for the microsphere calibration particles by weighing volume scattering functions computed from Mie theory according to the known size distribution of the microsphere polydispersion and normalizing

3. By convolving $W(\theta,\theta c)$ with $\beta(\theta,\lambda)/b(\lambda)$, we then compute the normalized volume scattering coefficient for each measurement angle, $\beta(\theta,\lambda)/b(\lambda)$, with units of 1/sr: $\beta(\theta c)/b$ for 2.00 micron diameter beads.

Wavelength, λ (nm) e, θc **700** 117 **0.0027272**

Angle, θc

4. We then experimentally obtain raw scattering counts simultaneously with attenuation coefficients (Cp, using an ac-9) for a concentration series of the bead polydispersion. Absorption by the calibration particles is assumed negligible. Results for this instrument follow:

	raw counts, 117			
	Cp700	Digital	Analog	
		47.0000	0.0760	
				Dark Counts: obtained by covering detector with black
Clean water	0.0382	107.8148	0.1322	tape and submersing sensor in water.
	0.3096	297.9655	0.3653	
	0.5631	482.0000	0.5909	
	0.8441	676.2308	0.8290	0.8355
	1.7168	1303.5357	1.5980	
	2.5725	1893.0000	2.3206	
	3.3996	2480.7308	3.0411	5.771
	4.2681	3119.5385	3.8242	

5. We obtain b/counts from the slope of a linear regression between Cp (equivalent to b for the beads) and counts:

	117			
slope, intercept	0.00141	-0.11128	1.14968	-0.11128
	0.00000	0.00687	0.00338	0.00687
r	0.99995	0.01213	0.99995	0.01213

6. Multiplying the experimental b/counts by the theoretical $\beta(\theta c)/b$ yields the calibration scaling factor, S:

c

		5			
	digital	3.8436E-06	analog	3.1354E-03	
To obtain β	(θc), 1) subtr	act the dark count	s (see step 4) from the raw counts measured,	then 2) multiply by	${\boldsymbol{S}}$ from the table
above.					

7. The test also provides a measure of the inherent noise level of the instrument from the short term RMS deviation from
the average number of counts. We translate this into the resolution of $\beta(\theta c)$ (minimum detectable signal change) in units of
1/(m. st
Noise (counts)1Resolution (1/[m. ster])

Noise (mV) 0.5000

Resolution (1/[m. ster]) 3.844E-06