Chapter 5 Optical and Bio-optical Theories and Models
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KEVIN MAHONEY THESIS, TALK AND PAPERS MAY BE USEFUL FOR THIS CHAPTER

5.1  Motivation and Purpose of Chapter

Theories and models are useful for several reasons.  Fundamentally, they organize information through mathematical relationships.  For our purposes, these relationships can be based on first principles of physics, in particular those aspects involving electromagnetic radiation, optics, and even biology as suggested by Richard Feynman as indicated in Chapter 2, or through correlational functions that may be based on simple linear regressions.  These can take the general form y = a1x + b1 where x is an independent variable, y is an independent variable, and a1 (straight line slope) and b1 (straight line intercept) are empirical constants, nonlinear functions such as logarithms (i.e., functionally of a general form y = a2 ln x), exponentials (of a general form y = a3 exp (b3x)), or power laws (y = a4 xb4) in which the independent variable is raised to a power.    Much of our knowledge of bio-optical oceanography has been derived from experimental data sets using empirical relationships among biological and optical variables, generally referenced as empirical models.  In addition, fundamental theories of light and radiative transfer along with various forms of models have provided physical frameworks that are valuable for both ocean optics and bio-optics.   A hybrid or blended model, called semi-empirical, entails utilization of both theory and data sets that are used to produce relationships.  

For the purposes of this chapter, we use the term model rather broadly as a mathematical formulation(s) or functional relationship(s) that relates specific dependent variables with one or more independent variables (i.e., in general form: y = f(x1, x2, x3, …), read dependent variable y is a function of independent variables x1, x2, x3, …and so on.  In many cases several equations, which can also take the form of partial differential equations involving changes with respect to time and space coordinates, are required to describe different relevant and inter-related  phenomena.  These equations are solved as coupled sets or systems of equations or partial differential equations and give useful  functional relationships among relevant independent and dependent variables, often as functions of space and time.  

The FIRST PART OF THIS CHAPTER CONCERNS PHYSICAL OPTICAL MODLES???  The  first section of this chapter briefly outlines the theory of light scattering by particles  including living or non-living biological cells and introduces the concepts of the classical Mie theory.  In the second section, radiative transfer theory and models are discussed.  These first two sections concern optical theories and models that are generally based on first principles, but also involve approximations and basic assumptions.  MAKE PART 2? ??Next, we discuss bio-optical models that relate to biology as well as optics and require data sets to establish empirical relationships among biological and optical variables.  A brief review of models of primary productivity is then provided.  PART 3???  There are several other oceanographic models that are useful for interdisciplinary studies involving bio-optics.  These include physical mixed layer, ecological, and biogeochemical models.  Brief summaries of some of these models and guides to further reading are given in Appendix???; examples of studies using models are presented in Chapters 6 and 7.    Several references are provided below for more detailed information and in-depth discussions and applications of optical, bio-optical, and interdisciplinary models and theories.  

5.2 Theory of Light Scattering by Particles or Cells
Scattering of light by suspended particles, many of which are biogenic in origin in the ocean, has been deemed by many optical oceanographers to be the single most important optical phenomenon that occurs in the sea (e.g., Shifrin, 1983).  A very clear introduction to the concepts and mathematical descriptions of scattering and absorption of light by particles is provided  in the book by Bohren and Huffman (1983).  Some of their major points, explanations, and illustrations are utilized in this chapter.  We begin with a familiar example from geometric optics.  If we consider parallel beams of plane wave  light impinging on a solid spherical object that is fairly large (with respect to the wavelength of light) and composed of ideally homogeneous material (for example a clear, optically dense glass marble), light will be attenuated due to absorption by the particle and scattering due to the presence of a disturbance (the particle) within an homogeneous medium. The amount of light attenuated will be equal to the amount of light impinging on an area equal twice that of the cross sectional area of the particle.
Scattering can be described in terms of more specific phenomena including reflection and refraction (i.e., following Snell’s Law) as illustrated using rays of light beams in Figure 5-1 (see Shifrin p. 120; his Figure 4.5).  Scattering of electromagnetic radiation and these specific sub-phenomena are all explained through solutions of Maxwell’s equations (discussed below).    The scattering is caused by numerous interactions of the electromagnetic radiation (here being light) with the electric charges (i.e., created by protons and electrons) of the composing particles of the sphere.  In some instances, the energy can be transformed with change in wavelength.  This is called inelastic scattering and involves processes such as Raman scattering and natural fluorescence, which entail changes in wavelength of incident and scattered radiation (a process termed transpectral).   Scattering by the example sphere can be simply represented as scattering = excitation + re-radiation as illustrated in Figure 5-2 (after Figure 1.1 of Bohren and Huffman, 1983).  

Much of the theory of ocean optics is based on the fundamental nature and mathematical description of light scattering by a single isolated particle.  A conceptual view of the phenomenon follows.  An arbitrary particle consisting of a number of positive and negative changes is illuminated by incident electromagnetic radiation or light as depicted in Figure 5-3 (after Figure 1-4 of Bohren and Hufmann, 1983).   The light beam is actually an oscillating field or wave and the radiated or illuminated particles are affected by the electromagnetic radiation so as to produce dipole moments (having positive and negative poles at opposite ends as depicted in Figure 5-3); that is, they form dipoles (and generally other higher order poles called ‘multipoles’ as discussed later) and are aligned parallel to the exciting field with positively charged ends all pointing in one direction and negatively charged ends in the opposite direction.  These dipoles themselves oscillate in response to the incident radiation and produce (i.e., scatter) what is known as ‘secondary radiation’ or scattered light.  An exact solution of the large scale problem posed here, called a many body-problem since the body is actually composed of a large number of individual charged bodies (also there is energetic coupling among molecules and many photon direction changes), would require multiple calculations of the radiation or light field as it was modified through interaction with each of the charged particles.  

Scattered individual waves or ‘wavelets’ can be measured at some point in space (indicated by point P in Figure 5-3).  If the particle is small with respect to the wavelength of the illuminating radiation, then the secondary wavelets are nearly in phase and only slight variation in light scattering direction occurs.  As the size of the particle is increased for the same incident wavelength of radiation or light, differences in the phases of the wavelets cause maxima and minima (peaks and valleys) in the scattering pattern; these are simply observed as cancellations and enhancements (destructive and constructive interference patterns) of the affected wavelets.  This is one of the principles used for particle sizing instruments described earlier.  Also, shape affects the phase relations and scattering patterns.  While the phase relations among the many wavelets are determined by scattering direction, particle size, and particle shape, the individual amplitudes and phase induced dipole moments are controlled by the material properties of the particle itself.  

It is important to realize that all media are truly inhomogeneous or heterogeneous in that individual atoms, molecules, and charged particles make up all media (excluding a perfect vacuum of course).  In fact, it is the individual inhomogeneities or small bodies that result in the scattering of light as exemplified in the previous paragraph.  The scattering phenomena can be roughly subdivided according to the media of interest: solid, liquid, or gas phases.  In particular, the molecular separation distances for solids and liquids is on order of angstroms (1 angstrom = 1 X 10-10 m) whereas it is on order of tens of angstroms in gas phases at standard temperature and pressure.  We will discuss limiting theories based on sizes of particles with respect to wavelength and concentrations of particles later in this chapter.  The concept of the refractive index is especially important in describing light speed and propagation direction changes in bodies or media where there are large numbers of molecules within a given volume (Figure 5-1).  For ocean waters, the concentrations of particulate matter typically increase in highly productive ocean waters and in coastal regions where waters are not only productive, but also contain terrestrial and bottom resuspended matter along with increased concentrations of dissolved materials (i.e., CDOM).   Extreme cases include coccolithophore blooms when large concentrations of highly reflective plates occur.  One can think of the light scattering process as sort of a chain reaction of photon interactions with associated direction changes and absorption events.  

Light scattering can also be considered in terms of fluctuations of particles within a very small control volume or by individual particles.  Light propagation through an optically dense,  “pure” glass or even a given small oceanic particle can be considered to be statistically homogeneous in that nearly the same number of molecules can be observed within a small test volume over a finite time interval.  However, in the atmosphere and ocean (air and water media), there are typically quite unsteady conditions that lead to significant fluctuations in concentrations and particle orientations and thus optical properties in small volumes.  Hence, scattering due specifically to such fluctuations in the atmosphere can be seen in the twinkling of stars on a clear night and in natural water when a small diameter laser beam is projected through even quite pure water.  The scattering of light from fluctuations in seawater is likely important for small SOMETHING MISSING HERE/SEE EARLIER DRAFTS??  and potentially for measuring turbulence (Bogucki et al., 19??; ALSO OTHER REFERENCES).   However, particle scattering as depicted in the previous paragraphs is likely more generally important for most of the bio-optical problems of interest here and will be the primary focus of this chapter.  

As discussed above, scattering can be caused by pure water, dissolved materials, and density fluctuations, but here we will primarily focus upon scattering from particles, generally approximated as spheres.   Much of ocean optics and bio-optics concerns the aggregate or bulk optical effects of large numbers of particles, organisms, and bubbles, which are collectively diverse in type, shape, density, elemental and pigment composition, structure, and optical indices.   However, fundamental theories devoted to light interaction with individual particles, cells, or bubbles are valuable and often essential for describing or predicting the overall distributions of light fields, typically through radiative transfer theories and models.  This individual approach can be thought of as reductonist (or bottom-up as opposed to a holistic, top-down approach ).  That is, a system is subdivided into smaller parts and each part is examined individually to develop an understanding of the whole system.  In particular, if we wish to describe the trajectory and fate of a single photon as it enters the ocean, we need to know the physical rules for its angular scattering and in many cases its ultimate absorption by matter.  Here we consider only the case of elastic scattering. Of course, information including the spatial and temporal distributions of the particles, bubbles, and organisms, along with their specific physical (especially optical) characteristics, would be needed for an exact solution to this problem.  

The conceptualization of light scattering in the ocean by particles is nicely explained by Kirk (1995) as follows.  Photons enter the ocean from the surface and most are eventually absorbed, but only after numerous encounters with water molecules, dissolved matter, particles, bubbles, and organisms from which they are scattered.  The scattering process itself does not remove light from the environment, but rather acts to cause the photon to make zig-zag paths as it traverses downward through the water column.  The zig-zagging motion results in making the pathlength of the photon through the water longer and in increasing the probability of absorption by the water medium (including dissolved materials) or particles.  The net effect of scattering is ultimately to increase the vertical attenuation of light (effectively quantified through quantities such as the diffuse attenuation coefficient, Kd defined earlier).

Generally, we are interested in not just one photon, but rather a very large number of photons that enter the water at many different angles and with wavelengths spanning the visible light spectrum.  The solution of the problem of light interaction with a single particle (hereafter for brevity the general term ‘particle’ includes inorganic particles, living and nonliving cells, and bubbles) is of more than academic value since generally particles in the ocean are spaced at distances much greater than about three times the particle’s radii (e.g., Van de Hulst, 1957).  Thus, it turns out that we can often sum the results of many scattering events with little introduction of error as discussed below.  The so-called single scattering approximation begins to fail in the unusual oceanic cases when there are extraordinarily high concentrations of particles however.  Also, oceanic particles are often considered to be randomly distributed.  However, we know that this is not typically the case (i.e., we will see examples of great variation particularly in the vertical dimension and time in the next two chapters).  We will return to these issues in the radiative transfer subsection, but first we focus on light interaction with a single particle that we will idealize as a sphere.  

Perhaps the most familiar theory of scattering of light by a particle was developed by Lord Rayleigh (1871; ref in Lynch and Livingston, p.69), which has been used to explain many atmospheric phenomena.  However, this theory cannot be generally applied to oceanographic problems because it is valid only if the relevant particles (or scattering centers) are small relative to the wavelength of light (D<< where D is particle diameter and  is wavelength of light).  This condition is generally satisfied for the case for atmospheric gas molecules and  for small density fluctuations in pure water.  However, in even the clearest waters of the ocean, or the natural environment in general, there are very large numbers of particles of diverse origin and with size scales greater than the wavelength of visible light as discussed in Chapter 2.  Although the number of smaller particles is much greater than large ones, the particle cross sections encountered by photons in the ocean are typically greater than 2 m or 2000 nm and thus greater than the wavelengths of visible light (400-700 nm; see Jerlov, 1976).  Also, the smaller particles have smaller scattering efficiencies as we shall see below.   We will return to the Rayleigh scattering theory when we discuss the limiting cases of Mie theory.

The general problem of electromagnetic radiation or light interaction with a single conducting sphere of arbitrary diameter has been studied for over a century and has been solved using Maxwell’s equations of electromagnetism (e.g., see Bohren and Huffman, 1983; Shifrin, 1983; Halliday et al., 2001; Born and Wolfe, 2002).  The historical context of work on this topic by Lorenz (1890), Love (1899), Debye (1909), and Mie (1908) may be found in books by Jerlov (1977), Bohren and Huffman (1983), Shifrin (1983),  Logan (1990), Mobley (1995), and Born and Wolfe (2001).  These books provide discussions at different mathematical levels.  The formal mathematical developments and explanations of the theory of electromagnetic radiation and its interaction with a sphere, usually referenced as Mie theory, requires knowledge of partial differential equations, infinite series, and special mathematical functions (e.g., Bessel and Legendre functions).  The theory is thoroughly explained by Born and Wolfe (2001) for physical optics, by Bohren and Huffman (1983) in reference to small particles in general, and by Shifrin (1983) with emphasis on ocean optics.  Other useful references for Mie theory include books by Van de Hulst (1957), and Kerker (1969).  Because there are so many literature sources describing and explaining Mie theory, the following discussion is intended to give the reader only the most basic background of the problem, to explain the general process of solving the relevant governing equations, and to highlight its importance and applications.  

The general problem of scattering of light, which impinges upon an ideal sphere is depicted in Figure 5-4.  The coordinate system (Cartesian and spherical) depicted in this figure follows the convention of Shifrin (1983) (for readers reviewing the derivation by Born and Wolfe (2001), note that they use a polar-spherical coordinate system).  We consider an incident plane light wave (taken to be a linearly polarized wave; polarization is discussed Appendix ?? [SEE HALLIDAY ET AL P 814 AND USE FOR THIS APPENDIX]) to be approaching the sphere from the direction of the negative z-axis as shown in Figure 5-4.  The idealized electromagnetic wave, which we assume to extend infinitely in a plane perpendicular to the direction of propagation, can be taken to be oriented such that the incident electric field vector, Ei, and its vibrations are directed along the x-axis whereas the incident magnetic field vector, Bi, and its vibrations are directed along the y-axis (Figure 5-5; FROM HALLIDAY ET AL., 2001 P. 805; FIGURE 34-5 ).  This ideal plane wave, which in this coordinate system propagates in the direction of the positive z-axis [MAKE FIGURE 5-4 AND 5-5 INTERNALLY CONSISTENT!], is considered to be oscillatory or harmonic in nature and usually described by a sinusoid (sine or cosine function).  Next we consider the energy propagation of the incident wave in terms of the Poynting vector.

Poynting Vector

The rate of energy transport per unit time (or power) per unit area for an electromagnetic wave such as light can be described with the Poynting vector (see Halliday et al., 2001).  The incident Poynting vector Si, for our case is a useful quantity as it represents the incident power of the electromagnetic wave.  Further, its direction is along the positive z-axis (Figure 5-5) and Si can be computed using the vector cross product (see Halliday et al., 2001, or an introductory calculus book for the definition and explanation of the cross product) according to 





Si = Ei X Hi 
(W m-2) 



(5-1)

with the direction of Si (in units of W m-2) being perpendicular to the plane formed by the  electric field vector Ei (in units of  volt m-1 or newton coulomb-1) and the magnetic field strength vector Hi (in units of weber m-2).  The magnitude of the Poynting vector is given by





|Si| = |Ei|  |Hi| sin ’
(W m-2)


(5-2)

where |Ei|  is the magnitude of Ei ,  |Hi| is the magnitude of Hi, and ’ is the angle between the vectors Ei and Hi.  If Ei and Hi are perpendicular to each other, which is the case for electromagnetic waves, then ’ = 900 and  we can simplify equation 5-2 to
 



|Si| = |Ei|  |Bi|   

(W m-2)


(5-3)
Mie Theory

We now focus specifically on Mie theory, which represents one of the great accomplishments of theoretical optics.  This theory has had lasting and large impact upon ocean optics. The problem addressed by Mie theory is essentially the problem outlined above and appears fairly simple at first glance, but it turns out to be quite complex in solution.  The most common reference to this general body of work is ‘Mie theory’ in honor of Gus Mie’s contributions (e.g., Mie, 1908), although some refer to it as Mie-Debye theory paying honor to ????Debye (REF?) or Lorenz-Mie theory (this designation becoming a popular designation in recent years) acknowledging earlier independent work by ???? Lorenz (1890).  We will use the more common term Mie theory for brevity and since it remains most commonly used by optical oceanographers at present, but acknowledge that many others have previously contributed to and continue to contribute to this important topic.  

Mie theory is remarkably powerful as it provides exact solutions that are valid for spheres of all sizes, indices of refraction (i.e., physical and particularly optical composition), and incident wavelengths, subject to the aforementioned assumptions (e.g., sphericity, material homogeneity for the sphere and the surrounding medium).  Mie theory is especially valuable because it can be applied to so many different practical problems.  For example, the theory is used to explain atmospheric phenomena such as rainbows, glories, and coronas and particle size distribution information needed for medical and industrial manufacturing applications (i.e., quality control in sugar particle size ranges) along with oceanographic particle and sediment sizing instruments discussed in Chapter 3.  There are numerous scientific papers published each year concerning fundamental Mie theory, calculations and approximations involving Mie theory, and of course its many applications (e.g., a web search on ‘Mie theory’ illustrates this point convincingly).  Ongoing research is also being devoted to non-planar incident waves and particles of arbitrary shape and much work is being devoted to creating computer programs and code that enable faster and more efficient calculations using the theory (Bohren and Huffman, 1983, have presented computer code in their book for Mie calculations; OTHERS MENTIONED LATER?? see studies conducted using the Bohren an Hiuffman code by Mahoney SEE KEVIN’S PAPERS AND THESIS).

Mie theory was developed for scattering and diffraction (i.e., diffraction is described as flaring or spreading of light; see Halliday et al., 2001) of electromagnetic radiation, including light, by a single sphere.  However,  the theory also applies for any number of spheres under certain constraints, thus making it a remarkably powerful theory for problems of the natural world including the atmosphere and the ocean where numerous particles exist.  At the outset, we should be careful to note that Mie theory assumes that the particles under consideration are spherically shaped and that the incident monochromatic light is a plane electromagnetic wave.  Of course, most ocean particles are not spheres,  so we will return to this point later in the discussion.  Also, Mie theory computations are quite complicated and require large numbers of calculations, so approximations can be very important.  We will thus discuss limiting cases where simpler computations are valid, meaning that introduction of error is minimal (i.e., when Rayleigh scattering is for particular size and refractive index ranges of smaller particles and diffraction theory is valid for large particles).  

Formally, Mie theory considers propagating plane electromagnetic radiation, specifically a  monochromatic (single wavelength) light wave, and its perturbation by, or more correctly its interaction with, a homogeneous, isotropic sphere (our idealized oceanic particle).  The diameter of the incident light beam is presumed to be greater than that of the sphere.   The sphere is presumed to be suspended in a medium of infinite extent that is also homogeneous, uniform in composition, isotropic, and non-absorbing, and whose complex index of refraction has real and imaginary parts (mm = nm – ikm; remember that nm represents the real part of the refractive index and establishes scattering properties of the medium whereas km is the imaginary part that characterizes the absorption; if there is no absorption, then km = 0).   The wavelength of the incident light in the medium is m = vac/nm where vac is the wavelength of light in a vacuum (in vacuo).   By a homogeneous and isotropic sphere, we mean that it is composed of a material that does not have spatial physical variability and does not express different optical properties when observed from different orientations.  The idealized sphere of diameter D is considered to be an electrical conductor and to be composed of a dielectric (polarizable so that positive and negative ends of physical units like molecules or atoms are created) material whose complex refractive index is uniform and can be expressed as ms = ns – iks.  For the most general theory, size of the sphere and the wavelength of the impinging light are considered to be arbitrary and without constraint.  Below, we shall see that key scaling parameters for the problem involve the wavelength of incident light, the radius or diameter of the sphere, and in general the real and imaginary parts of the complex index of refraction of the sphere relative to their counterparts in the surrounding medium.

Mie theory, which is used to solve Maxwell’s electromagnetic equations subject to appropriate boundary conditions, provides solutions for the light field both inside the sphere of interest and throughout the external medium.  Put another way, the problem posed by Mie (and others noted above) is how to determine the radiant intensity, Isc,  or power of light scattered through a solid angle as a function of scattering angle, arbitrarily called  (here with respect to the positive z-axis),  wavelength of the incident light in the surrounding medium, m, the particle diameter, D, and the complex indices of refraction of the sphere or particle, ms, and the medium, mm, or symbolically

Isc = Isc(,m, D, ms mm) 
(W sr-1)

(5-4)

To further describe the basic physical light-particle interaction problem of Mie theory, incident  radiation acts to create oscillating electrical-magnetic  polarization of the sphere, and the light is re-radiated or scattered from the particle because of these induced particle oscillations.  Mie theory in its most general form includes the multiplicity of wave contributions resulting from a series of electrical and magnetic multipoles (dipoles are one form of multipole, but there are higher order multipoles as well) that are induced within the particle.  Note that in contrast,  the well known Rayleigh scattering theory (actually an approximation) of scattering (Lord Rayleigh, 1871) that is so often used for the small particles residing in the atmosphere, considers only a single electromagnetic dipole, making the problem much simpler. 

Before we proceed to review and summarize the Mie theory solutions and their implications, we briefly discuss the physics and mathematics used by Mie and others to obtain their solutions.  The governing equations for Mie theory are those forwarded by James Clerk Maxwell.  These consist of a set of partial differential equations, usually written in condensed form with field vectors (representing magnitudes and directions) and vector operators (i.e., divergence and curl operators, see textbooks on vector calculus) for the dependent variables.  [Readers unfamiliar with vector calculus and vector operators are encouraged to continue reading through this section as we focus here on general ideas; only the most basic ideas of vectors representing magnitudes and directions of physical quantities are required for understanding].  These include: the magnetic induction (also called magnetic flux density) vector, B (in weber/m2; bold notation indicates a vector variable), the magnetic field (also called magnetic field intensity or magnetic intensity) vector, H (in amperes-m; note  H = B/ - M is a material or constitutive relation where  is the magnetic permeability of the medium (here free space) in henrys/m) and M is the magnetization (average magnetic dipole moment per unit volume)),  the electric field (also called electric field strength or electric field intensity) vector, E (volts/m), and the electric displacement vector, D (in coul/m; note D = o E + P is another material or constitutive relation whereo is the electrical permittivity (farad/m) in free space and P is the electric polarization or average electric dipole per unit volume which can also be written as P = o  E where is the electrical susceptibility).  It should be noted that the phenomenological coefficients are all dependent on the medium but are typically considered to be independent of position (homogeneous) and orientation (isotropic) for our purposes.

Maxwell’s equations can also be written as integral equations and these are useful for solving many classical problems of electromagnetism (Halliday et al., 2001).  These integral forms are perhaps more familiar to those who have previously studied general physics or electricity and magnetism and who may recall Ampere’s law concerning interactions of current fields, Faraday’s law involving time varying electromagnetic fields, Gauss’circuital law for magnetic fields, and Coulomb’s law of force.  In fact, Maxwell’s equations resulted from Maxwell’s unification of these laws and relations along with his introduction of the displacement current.   His work in the mid-1800’s led to 1) the forecast of transverse (electromagnetic) waves (with oscillations perpendicular to the axis of propagation; Figure 5-5)), 2) the calculation showing that electromagnetic waves should travel at near the speed of light, and 3) the assertion that light was a form of electromagnetic radiation.  In this development, Maxwell’s theory preceded experimental verification by Hertz in 1887, or about 25 years after theory formulation.  Both were likely deserving of Nobel Prizes, which were not initiated until 1901. 

The differential form of Maxwell’s equations, as used for electromagnetic wave problems such as those of interest for scattering of light energy from spheres and particles, can be represented in vector calculus forms as FIND PROPER SYMBOLS FOR THE FOLLOWING EQUATIONS

DEL X H = dD/dt + J 



(5-5)


DEL X E = - DB/Dt




(5-6)

DEL . B = 0





(5-7)

and

DEL . D = e





(5-8)

where the vector operator called the curl is represented as (DEL X), the vector operator called the divergence is (DEL .), J is the current density (in amps/m2) associated with “free” charges and its material or constitutive relation with E is given by J =  E where  is electrical conductivity, and e is the charge density or volume density of “free” charges (in coul/m3).  These remarkably comprehensive and useful equations and their many applications are discussed and explained in numerous textbooks on electromagnetism (e.g., Hallday et al., 2001).  

Shifrin (1983) and Born and Wolf (2001) have presented detailed mathematical developments and explanations of Mie theory.  We use these as the basis for our very abbreviated discussion of Mie theory here.    For our problem, the four equations comprising Maxwell’s equations above (5-5 through 5-8) can be manipulated to form two vector partial differential equations called wave (here electromagnetic wave) equations for the vector electric and magnetic fields as represented by

DEL2 E + k2 E = 0  




(5-9)

and

DEL2 H + k2 H = 0  




(5-10)

where DEL2 is the Laplacian operator (in Cartesian coordinates DEL2 is written as d2/dx2 + d2/dy2 + d2/dy2), and k is the wavenumber of the incident wave (in the positive z-direction) that is assumed to be periodic.  The plane wave in the medium outside the sphere can be represented by sinusoidal functions (e.g., sin (kz-t)), and the wavenumber k can be rewritten as 2/ where  is the wavelength of the incident wave (here we suppress the subscript m on for convenience) or alternatively k = /c being the angular frequency of the wave, , divided by the speed of light, c.

The general solutions to the set of wave equations provide the basis for Mie theory; however, initial and boundary conditions need to be applied upon E and H to achieve specific relevant solutions that are useful in practical terms.  Again, the light field impinging upon the ideal sphere excites the electromagnetic field of the sphere, setting up or inducing the electromagnetic and electrical multipoles described earlier.  A constraint of continuity (equality) of the tangential components of the external and internal (to the sphere) electrical vector, E, and the magnetic vector, H, must be satisfied.  Also, it follows that that the radial components of E ( is the dielectric constant) and H must also be continuous (equal) across the sphere’s surface based on the tangential boundary condition and Maxwell’s equations.  These boundary conditions constrain specific solutions of Maxwell’s equations.  For Mie theory, forced sinusoidal vibrations or oscillations are assumed and steady-state conditions are considered, thus eliminating transient solutions and simplifying the problem.  This is a good assumption for most of our applications.  Further conditions are applied for two vibrations.   The first vibration assumption takes the radial component of the magnetic field to be zero while the radial electric field is taken to be nonzero; similarly for the second vibration the radial component of the magnetic field is set to zero while the radial component is nonzero.  At this point, the mathematical problem consists of finding six unknown functions for E and H (note three spatial  components for each).  For convenience, Born and Wolf (2001) describe the decomposition of the electric and magnetic fields according to location: 1) incident and exterior to the sphere (i.e., Ei), 2) within the interior of the sphere (scattered and diffracted; (i.e., Ew)), and 3) surrounding the outside the sphere (i.e., Es), resulting from interactions.   

It is also mathematically expedient to define potential functions (electric fields can be defined as spatial gradients of scalar electric potentials, e.g., E  = DEL VE), which can then be used to find the solutions (see Shifrin, 1983; Born and Wolf, 2001).  The solutions take the form of special functions (Bessel functions, Hankel functions) and solutions that can be written as infinite series solutions (e.g., Legendre polynomials) as presented in detail by Born and Wolf, 2001).  The key scaling parameters in these solutions are the diffraction or Mie parameter given by

M = (D/) ma



 (5-11) 

where again the diameter of the sphere is D, is the incident wavelength, and the ratio of the relative index of refraction of the sphere to the surrounding medium or  

       m = mi/ma





(5-12)

To summarize some of the main points concerning Mie theory covered thus far.  Mie theory considers an incident light field that causes electromagnetic multipoles within a conducting sphere.  The sphere itself then becomes a secondary source of an infinite number of ‘secondary’ or partial waves (like the wavelets depicted in Figure 5-3 (i.e., mathematically represented by terms in an infinite series of Legendre polynomials).  Examples of partial waves are given in Born and Wolf (2001).  The amplitudes and phases of these waves, which propagate in all directions, are established specifically by the Mie parameter, M, and the relative index of refraction, m, as well as the order of the wave.  The amplitudes of the radial components of the electric and magnetic field strengths of the scattered waves decrease with the inverse square of the distance from the scattering center (located at the center of the sphere).  Other components fall off inversely with this distance.  At great distances from the center of the sphere (for our purposes, several wavelengths), called the radiation or wave zone, the radial components are negligible compared with the tangential components as the wave is then transverse.  Angular dependence on the other hand is determined by angular functions involving Legendre polynomials, and is independent of either M or m.  It is worth re-emphasizing that Mie theory encompasses the commonly referenced processes of reflection, refraction, and diffraction as well as small particle scattering (Rayleigh scattering).  

Solutions for light scattering using Mie theory have some interesting and useful properties.  

1. The angular scattering pattern is symmetric about the axis of the incident light beam (negative z-axis) for a perfectly spherical particle.  

2. The light intensity for larger spheres is greater for a particular scattering angle, allowing separation of particles by sizes (discussed in Chapter 4 for particle size analyzers).  

3. Light intensity decreases as the scattering angle increases, and for particles with diameters greater than the wavelength of light, scattering is much greater in the forward direction (FIGURE 4.1 IN KIRK, P. 87; ALREADY USED IN CHAPTER 2 I THINK??).  

4. The scattered angular intensities are smaller when the particles are very small (say less than 50 nm).  

5. Another feature of light scattering from a sphere is a pattern of maxima and minima in the light intensity (see Figure 5-6; Shifrin  p 124) with the pattern being distinct for a particle of a specific size (again a property used for particle sizing instruments). 

Although the general solutions of Mie theory are complex and involve many computations, solutions can be presented in rather easily understood and practical forms, namely efficiencies.  For example, absorption efficiency, Qa, is defined as the fraction (or percent) of incident radiant energy that is absorbed by the sphere with the incident energy being that energy which specifically passes through a cross-sectional area (also conceptualized as the shadow area) presented by the sphere, 

As =  (D/2)2 =  D2/4
  (m2)
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Similarly, the scattering efficiency, Qb, is the fraction of incident radiant energy that is scattered into all possible directions.  The total attenuation efficiency, Qc, is simply given by

Qc = Qa +  Qb 
   (unitless)


(5-14)

Other efficiencies for backscattering, Qbb, and other parameters can be similarly defined.  Interestingly, the attenuation efficiency can take a value greater than one, meaning that a sphere or particle can affect more light than intercepted by the cross sectional area of the sphere.  This might seem counterintuitive and even a violation of energy conservational laws at first glance, but remember that light can diffract around objects and thereby increase their effect.  Furthermore, absorption and scattering efficiencies can individually have values greater than one.  In other words, the presence of a sphere or particle can perturb the light field causing effects well beyond the bounds of the sphere or particle because of the radiating secondary light waves.  

Another useful depiction of Mie theory solutions uses the concept of cross sections.  For example, absorption cross section, a, represents the cross sectional area of the impinging light beam that has power or energy equivalent to that absorbed by the sphere and can be computed as

a = Qa As = Qa  D2/4  (m2)  
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As was the case for the other efficiencies identified above, cross sections can be evaluated as b = Qb As  for scattering cross section, and as c = Qc As  for attenuation cross section.  

The efficiencies and cross sections are generally dependent upon the properties or materials of the medium and the sphere itself as represented by the relative complex index of refraction, mr, given by the expression

    mr = (ns – i ks)/(nm – i km)




(5-16)

if the surrounding medium absorbs.  But, if we presume a nonabsorbing medium in which the sphere or particle resides, so that km = 0, equation 5-9 reduces to

 mr = (ns/nm) – i (ks/nm) = nr – i kr 



(5-17)

where nr is the real part of the complex index of refraction of the particle relative to the medium and kr is the imaginary part of the complex index of refraction of the particle relative to the medium.  Interestingly, Mobley (1994) notes that for a spherical air bubble in water, nr is less than one as nr ~ 1/1.34 ~ 0.75.

The application of Mie theory for ocean optics and bio-optical problems relies on determining the optical properties and sizes of the individual marine particles as these are again key input parameters for the theory.  Living cells, and thus their properties and sizes, are not invariant in time as they are affected by nutrient and light conditions as well as age, growth, and physiology (e.g., Kirk, 1994; Mobley, 1994).  Thus, Mie theory calculations are necessarily quite complicated for real world situations.  Nonetheless, they have great value, supplying excellent overall structure for various analyses and models involving inherent optical properties when reasonable approximations can be made (e.g., sphericity).  Mie theory reproduces observed VSFs quite well except at the very small angles (e.g., Mobley, 1994).  More information concerning Mie theory and its ocean application to variability in VSFs may be found in several references (e.g., Beardsley, 1968; Beardsley et al., 1970; Pak et al., 1971; Gordon and Brown, 1972; Brown and Gordon, 1973, Kullenberg, 1974; Shifrin, 1988; Mobley, 1994).   

As indicated earlier, Mie theory calculations involve several individual computations.  The burden of computation has fortunately been reduced thanks to the development of modern high speed computers and individuals who have written efficient computer codes for Mie calculations. (Note that Fortran codes have apparently been more rigorously validated than C codes, Prahl, REF.).  Again, an algorithm that can be used for Mie calculations is given in an appendix of the book by Bohren and Huffman (1983).  Today, even personal computers are fast enough to do the calculations in reasonable time periods and to display the results in color simulations (e.g., see website http://www.sundog.clara.co.uk/droplets/irishwk.htm).  One useful website developed by Prahl (http://omlc.ogi.edu/software/mie/  plus his thesis and other references??) in fact allows you to do Mie scattering calculations online (see http://omlc/ogi.edu/calc/mie_calc.html).  The specific example given on this latter website is for a medium of air, but one can select values appropriate for seawater and an oceanic particle or particles.   Inputs for the calculation include: diameter of the sphere, wavelength of incident radiation in vacuo, index of refraction of the sphere, imaginary part of the index of refraction (a zero or negative value), the number of angles of interest, and the concentration or number density (e.g., in number of spheres per cubic micron).  

Most theoretical and computational work has been limited to spherical particles as irregularly shaped particles require deconvolution of several different parameters.  However, many if not most particles of interest are not spherical, so special studies are needed for particles of arbitrary shape.  Some references to this class of work include SEE www.embl.de/~rohrbach/AR_science_2.htm.  SEE http://www.microtrac.com/diffraction.htm for effects of particle shape on particle size distribution resolution using angular scattering measurements. Also, Kim and Philpot (EMAIL BILL AT wdp2@cornell.edu about the Kim and Philpot paper: Kim, M. and W.D. Philpot, 2003?, Optical modeling of phytoplankton: comparison between spherical and nonspherical models).    MAYBE US A FIGURE OR 2 FROM THIS PAPER TO ILLUSTRATE ERRORS INTRODUCED BY SPHERICITY APPROXIMATION.

ASK KEVIN MAHONEY INPUT ON THIS ALSO.

Mie theory is remarkable in many ways; however, as indicated earlier, it is sometimes quite difficult to utilize as noted in an example presented by Shifrin (1983).  Shifrin considered a biological sphere 20 m in diameter, an incident monochromatic light wave with wavelength of 546 nm, a Mie parameter (diffraction parameter) M with a value of  = 115.  He noted that 140 terms must be retained and calculations for each partial wave must be done with great accuracy as individual terms nearly cancel out each other for a proper Mie calculation.  Necessarily, heavy computational resources are needed, especially if more than one sphere or wavelength of light is to be considered for the specific problem.  Thus, it is clear that if simplifying approximations are possible for certain particle property and incident  wavelength ranges, then these would be quite useful.  Further, interpretations of calculations are facilitated for simpler computations done using such approximation theories (see Van de Hulst, 1957; Shifrin, 1983; and Born and Wolf, 2001, for extensive discussions of limiting cases and approximations).  There are two fundamentally important limiting cases for the general Mie theory.  First, we describe the well known Rayleigh scattering, which is valid when the sizes of the particles are small as are their relative indices of refraction with respect to the medium in which they reside.  These two criteria may be expressed as M<<1 and |mr M|<<1.  The second approximation that we consider is the more relevant for most ocean optics problems, and is called diffraction theory, the diffraction approximation, or simply diffraction.  The diffraction approximation is valid when the radius of the sphere is much greater than the wavelength of the incident light or M>>1.  We begin with a brief account of Rayleigh theory and then proceed with diffraction theory. 

In general terms, Rayleigh theory is valid for particles that are much smaller than the wavelength of the incident light (e.g., generally less than 0.05 m or 50 nm) and only the electric dipole set up by the incident radiation on a given particle plays an important electromagnetic role (i.e., higher order electromagnetic multipoles are negligible).  The scattering of light from atmospheric gases (molecules) in the atmosphere that results in the blue color of the sky on a clear day was explained by Lord Rayleigh’s theory (1899; see Lynch and Livingston p. 69 for ref.).  Note that his theory does not include the effects of water vapor, clouds, or aerosols, so only clear sky conditions are considered for his theory.  All visible wavelengths of light impinge on the atmosphere, so a selective chromatic process must be at work. According to Rayleigh’s theory, the probability of a single photon being scattered from its path is inversely proportional to the fourth power of the wavelength of the light.   Therefore, shorter wavelengths in the visible, namely photons in the blue portion of the spectrum, are more likely scattered than red photons.  Using the example calculation of Lynch and Livingston (2001), the probability of scattering of blue light at 450 nm is 3.2 times more likely than the probability of scattering of red light at 600 nm (note that the ratio of probabilities can be written as being (1/450nm)4/(1/600nm) 4 = (600nm/450nm) 4 = 3.2).  Then, by viewing of the sky (excepting viewing directly at the sun itself) on a clear day, we are more likely to see scattered blue light photons than red light photons.  The general progression we see with sunsets is a shift in color from white to bright yellow to orange and deep red.  One of the explanations for the colors seen at sunrise and sunset is based on the fact that light travels through much greater distances through the atmosphere at sunrise and sunset (since it is coming into the atmosphere at low incidence angles) than when the sun is overhead.  The spectral shift that occurs for increasing air mass (or equivalently longer effective photon pathlengths) is nicely illustrated by Lynch and Livingston (2001; see their Figure 2.6A)   Based on Rayleigh molecular scattering theory, there will be fewer photons reaching the observer from the short end of the visible spectrum, meaning that blues will be reduced relative longer wavelengths causing hues to be more yellowish and orangish. Another contributing effect is the absorption of blue and green photons by ozone in the atmosphere.  The reds seen at sunrise and sunset are usually most pronounced when there are aerosols and particles (e.g., dust, smog, water droplets) in the atmosphere.  Many of these particles are smaller than 100 nm in diameter and are especially effective scatterers and cause reds to dominate over the blues that dominate when molecular scattering is more important.  Readers interested in other atmospheric color phenomena are directed to the very readable book by Lynch and Livingston (2001).   A modern example of Rayleigh scattering concerns the attenuation of electromagnetic radiation in optical fibers (by this scattering effect and infrared absorption for wavelengths a bit greater than 1 m) used for communication.

Shifrin (1983) notes that as one considers particle sizes of larger diameter, Mie theory solutions require inclusion of  the effects of not only the electric dipole set up by the incident oscillating electromagnetic field, but also of the induced magnetic dipole and electromagnetic radiation produced by higher order moments (i.e., quadrupoles, etc.) and their accompanying partial waves.  Distributions of the induced electric lines of force within a radiated sphere are shown graphically in figures provided in Born and Wolf (2001).   Next, we consider the large scale limit (large D compared with , or more rigorously M>>1).  Interestingly, in this case it is not necessary to solve the full blown Maxwell’s equations or to do Mie theory calculations.  In particular, mathematically simpler geometrical optics and diffraction theory are often adequate (e.g., see Halliday et al., 2001; Hecht, 2001).  Even for spheres with diameters greater than just a few wavelengths of visible light, the problem of light interaction is significantly simplified.  As a light beam enters a large sphere, it can undergo multiple internal reflections and refractions or be reflected from the surface (Figure 5-1).  Jerlov (1977) has summarized the scattering process for ‘large-particle’ optics very simply, indicating that such scattering is the result of three phenomena: 1) diffraction: meaning the deviation of light from straight line paths through the action of a particle (elaborated upon in the next paragraph), 2) refraction: as light penetrates a particle, the light undergoes one or more internal reflections before emerging from the particle, and 3) reflection: the process of light being reflected from the external surface of the particle.  It is worth emphasizing at the outset that diffraction does not depend on particle composition whereas both reflection and refraction in fact do explicitly depend on the composition and specifically the difference in the refractive indices of the medium and the particle.  Also, classical geometrical optics (often taught in introductory physics classes with light passing through variously shaped lenses and glass shapes such as prisms) can be used if particle diameters are much greater than the wavelengths of the incident light.  

As a brief review, diffraction of light occurs under several circumstances.  For example when a plane wave of monochromatic light passes through an opening or slit with dimensions similar to that of the wavelength of the incident light, the emerging light changes direction or is diffracted (except for that specific portion passing through the very center of the opening or slit) and waves spread out  in arcs of peaks and troughs.  If light is sent first through a single slit and then through double slits, a series of maxima and minima are evident on the projecting surface as the incident waves are alternately in phase (constructive interference) and out of phase by 1800 (destructive interference).   An example of a single-aperture diffraction pattern is shown in Figure 5-4 (White, physics, p. 363; 364 or better figures elsewhere?).  For light projected onto a sphere (again with a diameter on the order of or exceeding the wavelength of light), a pattern of concentric dark and light rings (Figure 5-6) are seen in analogy to the double slit example (known as Young’s interference experiment (Young, 1801; note that Young’s experiment can also be used to determine the wavelength of light; see Halliday et al., 2001).  The dark lines or circles are caused by destructive interference of the light waves whereas the light lines or rings result from constructive interference.  The explanation is that different parts of the light waves reach the projecting surface concurrently, but with different phases (canceling or destructive effect when 1800 out of phase and additive or constructive when in phase at 00).  As a point of reference, Fresnel diffraction entails the passage of light from a point light source through a slit or aperture and the projection onto a surface with the separating distances being finite.  Classic Fraunhofer diffraction is a special case of Fresnel diffraction that can be created in the laboratory using lenses to produce collimated light that passes through the slit.  For many situations such as environmental optics including optical oceanography, Fraunhofer diffraction is valid as the distances between the source, the diffracting object, and receiving surface of interest are very large.  Again, Fraunhofer diffraction theory is also easier to use for calculations (Halliday et al., 2001).

The light diffraction phenomenon is used for particle sizing as discussed in Chapter 3.  Fraunhofer diffraction applies for larger particles (e.g., greater than about 50 m or  50000 nm).  The diffraction effect, causing the light to be deflected from its path (forming concentric rings alternately light and dark; see Figure 5-6), is caused by the wave nature of the light and its interaction with the particle as it passes.  The specific deflection angle is dependent on the light’s wavelength and the size (diameter) of the particle.  We have already discussed some of the optical instruments that utilize light diffraction (often called the Fraunhofer effect or Fraunhofer diffraction) for laser-based particle sizing measurements.  It has been noted that Mie theory should be used instead of Fraunhofer for particles less than about 50 m in diameter (Jones, 2003; from paper in American Laboratory, R.M. Jones, 2003, Particle size analysis by laser diffraction: ISO 13320, standarad operating procedures and Mie theory, 44-47).   A nice example showing a comparison of Mie and Fraunhofer computations as a function of diameter for calcium carbonate has been illustrated by Jones (2003) as shown in Figure 5-8.  WAS FIGURE 5-7 MENTIONED EARLIER??  Also, Mie theory requires specification of the indices of refraction of the particles of interest, which is not always known or easily determined for polydisperse (many different sizes of particles composed of differing optical densities and properties) situations.   

As a brief summary, both Rayleigh and Fraunhofer theories are limiting cases of Mie theory.  They remain important as the computations for Rayleigh scattering and Fraunhofer diffraction are both much simpler than those for Mie theory.  Since the Fraunhofer approximation is valid only for larger particles, the associated scattering is primarily in the forward direction (roughly less than 100 with respect to direction of propagation).  However, in many cases Mie theory must be used despite its complexity for important parameter ranges for ocean optics as discussed in detail by Shifrin (1983).  

Two other approximations for scattering processes are discussed in detail by Shifrin (1983): the ‘optically soft’ particle or Rayleigh-Hans-Debye (RHD) approximation and the physical optics approximation.  These two special cases allow relatively simple solutions to be obtained.  The RHD approximation can be used for light scattering from a homogeneous sphere when its relative index of refraction is nearly 1.  In this case, it is possible to solve the problem using integral-differential equations (these involve both integrals and differentials in the same equation) and solutions are valid for both spheres and non-spheres (see Shifrin, 1983).  The resulting solutions appear similar to Rayleigh scattering solutions aside from a multiplicative factor which is dependent on the sphere size, the incident wavelength, and the scattering angle (propagation direction of the light).   Shifrin (1983) notes that calculations made using this approximation introduce errors that are less than 15-20% for all scattering angles provided that M is less than or equal to 2 for a relative refractive index of 1.02 for the sphere.      

The physical optics approximation or anomalous diffraction (van de Hulst, 1957) is the final approximation we will discuss.  In this formalism, light scattering or perturbation is computed using interference of light rays that have phase differences superimposed upon them.  Conditions for this approximation include restriction to particles that have large values of  M and |mr - 1| << 1, but there are no constraints on phase shifts of the light.  Relevant particles for the physical optics approximation must be large and  ‘optically soft.’   Like the RHD case, the relative index of refraction of the particle or sphere must be close to 1.  For such spheres, light essentially passes through the particle with no refraction or reflection and the perturbation produced by the light passage is manifest only in phase change of the wave.  All parallel rays passing through the sphere are summed to provide the solution (i.e., Fraunhofer approximation).  Kirk (1994) presents an example of calculations for scattering efficiency and scattering coefficients as functions of particle diameter using this approximation (following Van de Hulst , 1957) as shown in Figure 5-??? (also see Shifrin (1983) for more details).  The diffraction theory solution for van de Hulst’s (1957) anomalous diffraction or physical optics approximation Shifrin (1983) can be expressed as a fairly simple expression

Qc = 2 – 4 sin  + 4 (1 – cos )
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                     
where D mr D is the sphere or particle diameter, and mr is the complex index of refraction.  Here we assume that the medium and the sphere are non-absorbing, so the imaginary part of the index of refraction is zero and further, the attenuation efficiency is equal to the scattering efficiency, or  Qc = Qb.  Note that the functional form of the solution or Qb(D) for the scenario illustrated in Figure 5-9  (SEE KIRK P. 90 FIG. 4.3) increases to a maximum and then oscillates about a value of 2.0 as particle diameter increases for the green light (550 nm) and relative index of refraction value of 1.17 assumed.  So, for very large particles, the scattering efficiency remains relatively constant aside from the relatively small oscillations about a value of 2.0.  This behavior is in fact representative of scattering by typical oceanic particles in the appropriate size and refractive index domains for visible light.  We note that as sphere diameter decreases below the peak in scattering efficiency, the scattering efficiency decreases roughly linearly.  

To summarize,  Mie theory allows computations for light scattering of all wavelengths (and even outside the visible portion of the electromagnetic spectrum) from virtually all sizes of spheres with a broad range of indices of refraction.  Rayleigh scattering can be used for smaller particle sizes (useful especially for atmospheric phenomena) and diffraction theory can be applied for larger particle sizes (both approximations are in reference to wavelength of light).   

Only scattering by a single particle has been considered thus far, however it has been determined that the light intensity received at a given point can be computed by simply summing all of the contributions of intensity produced by all scattering elements in the illuminated volume, provided that the distances between the spheres exceeds three times the individual radius.  This is essentially an ensemble approach.   Also, if we restrict our considerations to single scattering (i.e., no more than a single scattering event resulting from light interaction by the particle with the incident beam), then the total scatterance is proportional to the number of particles.  As indicated by Shifrin (1983), for most ocean waters, this approximation is assumed to be valid.  The general supportive argument that is often given is that the particles are generally widely enough separated and randomly distributed over the spatial scales of relevance, so that the phases of the collective waves scattered by the ensemble of particles are incoherent.  However, Shifrin (1983) explains that there can be difficulties with this assumption, in particular if there are systematic relationships between phases of the scattered waves (i.e., issues of coherence) when separation distances between particles are not much greater than the wavelength of light.     

The bulk inherent optical properties (IOP’s) of the ocean can in principle be computed provided we have requisite information on the optical cross sections (defined above) and can perform integrations or sums on the individual contributions by the many sufficiently separated particles.   Again, such computations are generally valid provided that the distances between particles exceeds about three wavelengths of visible light.  Mobley (1994) notes that even for very large numbers of very small particles such as viruses and colloids (order of 1015 m-3), the average distance between particles is typically greater than 10 wavelengths in the visible and that their distribution can be considered to be random on the relevant scales.  Treating the particles as very dilute and randomly distributed scatterers, one can consider the light field to result from an ensemble of individual scatterers that can be summed to determine the bulk optical effect, which can be formulated for the absorption and scattering coefficients as

a = N(D2/4) Qa   
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and 

b = N(D2/4) Qb   



(5-20)

where D is the diameter of the particle that is idealized to be spherical and N is the number of particles per unit volume.  Since particles are not uniform in size, an integral calculation encompassing all sizes would need to be done for oceanic problems and furthermore differences in efficiency factors would need to be included.  

Also, following Mobley (1994), it is possible to compute the scattering coefficient in bulk using the expression

b() = Int over all mr  Int over all D  b(D, mr, ) N(D) dD dmr 

(5-21)

where N(D) is the particle size distribution with N(D) dD being the number of particles per unit volume for particles with diameters lying between D and D + dD (discussed earlier in Chapter 2) and again the relative complex index of refraction is mr.  One can follow this procedure for different particle types that may include various phytoplankton species or sedimentary particles and then integrate these as explained by Mobley (1994).  This approach can also be followed to compute volume scattering functions.  

As we have seen, particle size is generally the most important factor affecting light scattering although index of refraction needs to be considered as well.  Most theoretical work has naturally been devoted to the problem of scattering from idealized particles in the form of homogeneous, isotropic spheres because of the greater ease in solution of the problem (e.g., Bricaud et al., 1983; Morel and Bricaud, 1986; Stramski and Kiefer, 1991 SEE KIM AND PHILPOT FOR THESE REFERENCES).  However, many, if not most, oceanic particles and biological organisms are neither spherical nor truly homogeneous.  Work on these complicating aspects has been done by various investigators (e.g., Hodkinson, 1963??), but there remains no all-encompassing theory for the more realistic cases.  ASK KEVIN MAHONEY ABOUT THIS!  However, specific research has addressed more realistic optical modeling of phytoplankton with some directed toward improved modeling of absorption as affected by varying intracellular pigment composition and concentration.   For example, researchers have developed two- and three-layer spherical models of phytoplankton (e.g., Kitchen and Zaneveld, 1992).   The problem of non-sphericity of phytoplankton has been addressed by Kim and Philpot ( 2002?; MAHONEY??), who noted that Mie theory cannot be strictly applied for such particles and that the theory cannot be used to invert measurements of nonspherical particles as the absorption and scattering of electromagnetic radiation must be different for nonspherical versus spherical particles.  Kim and Philpot (2002?) utilized special formulations (called T-matrix computations; Mishchenko et al., 1996) to determine the relative effects of particle nonsphericity (using different ratios of semi-major and semi-minor axis, , or equivalently semi-rotational and semi-equatorial axis scales for prolate and oblate spheroids) on scattering and absorption.  They found that light absorption was extremely insensitive to shape.  However, backscattering was greater for nonspherical ( < 1) opposed to spherical particles ( = 1).  A comparison of backscattering efficiencies for three cases (0.2, 0.5 and 1.0) is shown from the work of Kim and Philpot in Figure 5-10.  The expected range  is 0.5 <  < 1.0 and the deviations from Mie theory on the basis of nonsphericity should not be as extreme as indicated by Figure 5-10.   Fortunately, for many situations, the approximation of sphericity and homogeneity does not appear to cause excessive errors; however, further research is clearly warranted.

5.3  Radiative Transfer Theory and Models
Radiative transfer theory and models are used for problems that concern the propagation, scattering, and absorption of light (or electromagnetic radiation in general) as it passes through a medium of interest.  Previous studies concerning radiative transfer in the atmosphere and ocean are naturally most relevant for our purposes.  In this section, we introduce some of the fundamental concepts of radiative transfer theory and models along with a few examples of applications.  The fundamental equation of radiative transfer is presented along with explanations concerning initial and boundary conditions and discussions of requisite inputs for oceanic applications.  Some of the mathematical methods used for solving the radiative (or sometimes called radiance) transfer equation (RTE) are also discussed briefly.  Finally, some radiative transfer examples with relevance to optical and bio-optical oceanography are presented.  

There are numerous books and references devoted to radiative transfer theory and models because the topic is so important and broadly applicable.  The intent here is to provide the reader with only a broad overview and appreciation of radiative transfer theory and models relevant to bio-optical and optical oceanography and to suggest references that will be valuable for further study.  The key role of radiative transfer theory in ocean optics and bio-optical oceanography is illustrated in Figure 5-11 (after Figure 1-2 of Gordon, 1994).  The connection of radiative transfer with other topics discussed previously (e.g., IOPs, AOPs, remote sensing) is indicated in Figure 5-12 (after Figure 3-1 of Zaneveld, 1994).  Some of the early theoretical work devoted to radiative transfer in the ocean that began in late 1940’s is reviewed by Jelov (1976).  Specialized books that readers should find useful for reference and more in-depth reading with respect to ocean optics include Mobley (1994) and Thomas and Stamnes (2002).  The latter book also covers radiative transfer in the atmosphere.  Mobley’s (1994) work is perhaps the most useful complementary resource for this section as it bridges the gap between highly mathematical discourses (i.e., Preisendorfer’s (1976) over 1700-page treatise in six volumes, Hydrologic Optics) and more descriptive accounts (i.e., Kirk, 1994).  Other useful references of modest length include book chapters by Gordon (1994) and Shifrin (1983), who also provide many useful references.    

Some of the most fundamental problems of optical and bio-optical oceanography concern questions of how light propagates or is transferred through the ocean (i.e., hence the term radiative transfer).  These problems are often addressed using ‘direct’or ‘forward optical models’ and ‘inverse optical models’ as illustrated with the block diagram of Figure 5-13 (after IOCCG Report, 2001 Figure 2.1).  [As an aside: Bohren and Huffman, 1983, show an informative, amusing cartoon (their Figure 1.5 ) illustrating the direct problem as describing the tracks made  by a dragon and the inverse problem of describing what made the tracks (here the dragon); this clever example highlights the great challenge of inverse models.]  The purpose of the forward model illustrated in Figure 5-11 is to determine or predict apparent optical properties (AOPs) in the water column.  AOPs of interest include ocean color via radiance reflectance using inputs of inherent optical properties (IOPs including scattering and absorption parameters) if known or in situ constituents such as phytoplankton (perhaps by group or species if possible), chlorophyll, detritus, CDM, CDOM, and sediments which can be used to infer the needed IOPs (i.e., discussed in the next section).  Inverse optical models, on the other hand,  are used to determine or predict IOPs and/or in situ constituents such (as those listed above) from inputs of AOPs, which are often more easily determined than IOPs.   Both typically utilize the ‘radiative (or sometimes called ‘radiance’) transfer equation (RTE)’, which is often used as the governing equation for radiance distributions in the ocean and the atmosphere.  

Solutions derived from the forward optical model are useful for several purposes.  For example, until quite recently there were very few direct measurements of IOPs, so forward models were our only means to investigate how the light field and AOPs might be affected by variations in the several different IOPs.  For example, using different volume scattering functions and ranges of absorption and scattering coefficients, one could perform sensitivity studies.  The forward model could also be used for numerical simulations, as well as sensitivity analyses, for various problems such as the effects of coccolithophore blooms on the light field and upper ocean heating rates, estimating the photosynthetically available radiation at depth needed for models of primary production, remote sensing reflectance, underwater visibility and viewing instrumentation, or changes in light fields resulting from major phytoplankton blooms, land runoff, or wastewater discharges.  

Conceptually, the forward optical problem is fairly easily explained, so we will start with it.  For the modeling of the forward optical problem, let us start with the premise that somehow we know the IOPs or can deduce them from empirical relationships known as bio-optical models or proxy measurements (e.g., scattering and absorption coefficients can be estimated as empirical functions of chlorophyll concentration or other optically measurable quantities as discussed in the next section).  Then, assuming that we know the key variables describing  the incident light field at the surface of the ocean, we would like to determine the spectral light field and AOPs as functions of depth.  Most variation occurs with depth opposed to the horizontal for many problems of interest (i.e., notable exceptions would include fronts, coastal sediment plumes, phytoplankton blooms, or ice edges [examples will be discussed in the next chapters]).  So, the problem is considerably simplified as variability in the input IOPs and output in AOPs are needed only in one spatial dimension (depth) opposed to all three spatial dimensions.  Another often used assumption is that the upper ocean is spatially uniform in IOPs.  The validity of this assumption depends on the physics of the upper ocean as well as biological processes, but often it is useful to apply when the upper water column is uniform in density to a depth of interest (i.e., deep mixed layer, perhaps extending to the euphotic layer depth).  Although the problem as posed seems quite tractable, many of the methods that have been developed to solve it require following or tracking individual photons in all three spatial dimensions.  So the computational burden is very high.   

The primary equation of radiative transfer theory for the ocean, which serves as the basis of the forward optical model is the radiative transfer equation (RTE).  Priesendorfer (1965) and Fante (1981) have shown how Maxwell’s equations can be used to form the RTE.  A schematic depiction of the processes of photon gain and loss within a control volume are described by the RTE and illustrated schematically in Figure 5-14 (after Figure 1.6 of Kirk, 1994, p. 24).  By way of review, photons impinge on atoms or molecules with the result that they may be absorbed and thus cause the atom or molecule to go into a higher state of internal energy (i.e., this can be electronic, vibrational, or rotational).  Alternatively, interaction of a photon with an atom or molecule may result in a nearly immediate return of the atom or molecule to its original energy level with the emitted photon possessing the same energy as the incident photon.  Again, this process is called elastic scattering.  Another possibility is that the emitted photon will take on a lower or higher energy level.  This is inelastic or transpectral scattering and is associated with processes such as Raman scattering and natural fluorescence.  Other possibilities include conversion of photon energy into thermal or kinetic energy and conversion into chemical energy.  If the energy conversion process does not involve radiation processes, then we have absorption; on the other hand, conversion of chemical energy into light is emission.  The formulation of the RTE involves accounting for the fates of photons that travel through the water medium in all directions.  To summarize, processes relevant to our mathematical energy balance equation for a designated control volume include: 1) photon loss from the volume via scattering with no change in wavelength (elastic scattering),  2) photon loss from the volume with gain of photons of a different wavelength (inelastic scattering), 3) photon loss from the volume as a result of conversion of radiant energy to nonradiant energy (absorption), 4) gain of photons due to new photons with no wavelength change being scattered into the volume (elastic scattering), 5) gain of photons in the control volume, but with a wavelength change (inelastic scattering), and 6) gain of photons in the volume through conversion of nonradiant energy into radiant energy (emission).  The solution of the RTE in its most comprehensive form must account for all of these processes.  Mobley (1994) describes the formulations needed to depict these processes in detail.

We may write the RTE in the equation form expressing the change of radiation, dL, over differential path length dr (i.e., Mobley, 2002 and Figure 5-14 for the geometric setting) as follows 

dL(z, , , ) /dr = cos  dL(z, , , ) /dz = - c(z, ) L(z, , , ) 

                                                   + Int (L(z, ’, ’, ) (z; (’, ’) ( (, ); ) d’
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+ S(z, , , )



where the scattering angle  previously used for the volume scattering function (VSF or ) is defined here as the angle between the incident direction [defined by the zenith and azimuthal angular coordinates (’, ’)] and the scattering direction [zenith and azimuthal coordinates (, )] as shown in Figure 5-14.  Again, L is the radiance, z is the depth coordinate, and c is the beam attenuation coefficient. The multiplicative factor cos  on the lefthand side of equation 5-22 derives from the path coordinate, r, along which the incident beam travels, so dr = dz/cos   or dz = dr cos .  The physical explanation for this equation, which is a mathematical statement of energy conservation, follows.  The lefthand side describes the change of radiance, dL, as light moves over some distance dr (or as transformed, over depth dz).  The first term on the right represents the loss (note negative sign preceding this term) of radiance through attenuation via both absorption and scattering (c = a + b).  The second term on the righthand side, sometimes called the path function, describes the gain in radiation because of scattering of light into the control volume element from an arbitrary direction designated by angular coordinates (’, ’); also, the volume scattering function, , and radiance must be integrated over solid angle 4 to calculate this term.   The final term on the righthand side is a source term to depict internal light sources within the control volume of the calculation.  These could include bioluminescence or inelastically scattered light such as natural fluorescence (see Mobley, 1994).  The last term is omitted for many problems in which such effects are negligible.  

Again, the RTE as written in equation 5-22 assumes that light variability is much greater in the vertical than in the horizontal (one-dimensional in space), time independence, and homogeneous sea water (no vertical stratification in optical properties).  Other assumptions outlined by Mobley (1994) include: 1) the medium is composed of continuous material on the macroscopic level, 2) scattering particles are separated on average by more than a light wavelength (preferably at least 3 wavelengths) distance, 3) the scattering particles are randomly distributed, and 4) irradiances and photon energies are low (easily satisfied for our ocean applications).   

Before continuing, we note that by integrating both sides of equation 5-22 over 4 steradians and by assuming no internal sources (S=0), we arrive at the well known Gershun’s (1936) law or equation  

d(Ed-Eu)/dz = -cE0 + bE0 = -a E0


 (5-23)

which again represents light energy conservation (e.g. see Kirk, 1994; Mobley, 1994).  This equation is important as it states that the depth rate of change of the net irradiance (Ed-Eu) is proportional to scalar irradiance, E0, with the proportionality constant being the inherent optical property absorption, a.  Put another way, we can compute an IOP, namely absorption, a, if we can measure the net irradiance and the scalar irradiance.  In effect, this is an inverse model as we have inferred an IOP from an AOP.  Gerhsun’s law cannot be applied if inelastic scattering occurs.  Why?   Students are encouraged to derive equation 5- 23 using equation 5-22 and definitions presented in Chapter 2.  

The RTE (equation 5-22) is of the mathematical form of an integral-differential equation.  Gordon (1994) notes that analytical solutions for the RTE are possible only for special cases, such as when the single scattering albedo o = b/c = 0; that is, when there is no scattering.   Even for the simplified case considered here, there is no explicit analytical solution as the interacting effects of scattering and absorption present major obstacles.  However, approximations can be made to simplify solutions.  Gordon (1975) has reviewed the efficacy of certain approximate solutions including the single scattering approximation and the quasi-single scattering approximation.  The single scattering approximation ignores refraction at the sea surface and the effects of the atmosphere and assumes an infinitely deep ocean.  The series of RTE’s used for the solution are ordered in a power series (akin to a Taylor series) in the single scattering albedo, 0.  Since0 is less than 1, higher order terms (i.e.,  02, 03, 04, …, 0n) are smaller.  If  0 <<1, then the approximate solution converges to the exact solution.  For the quasi-single scattering approximation, the main assumption is that the volume scattering function is very large at small angles of scattering and falls off very rapidly, meaning that most of the scattering is actually in the forward direction.  In particular, this approximate method takes all scattering at angles less than 900 to be in the forward direction, 00 and then the RTE is solved as in the single scattering approximation.  For this case, c = a + b approaches c = a + bb for light scattering normally on the surface and further c = Kd(0) to first order (at the surface).  Examples of comparisons of RTE computations are given by Gordon (1994) for exact, single scattering, and quasi-single scattering approximations.  The quasi-single scattering approximation method performs quite well for estimating near surface values of reflectance, R, and downwelling diffuse attenuation coefficients, Kd.

Another practical approach is to use numerical methods to solve the RTE (equation 5-22) for the radiance field, L(z, , , ) using what are known as Monte Carlo methods (e.g., see references in Jerlov, 1976; Kirk, 1994; Gordon, 1994; Mobley, 1994).  Monte Carlo methods originated during the Second World War with development by well-known physicists and mathematicians such as Enrico Fermi and ???? von Neumann (Mobley, 1994).  The fundamental premise of the Monte Carlo method is that if we can ascertain the probability of occurrence of each interaction event (the menu of the six possible scattering and absorption processes listed above), then we can compute the probability of the complete sequence of photon interaction events.  A detailed explanation of forward Monte Carlo methods is provided by Mobley (1994).  Briefly, individual calculations are made for each and every photon under consideration.  Very large numbers of photons are required  to provide statistically significant results.  As the name Monte Carlo implies, photons are treated in a random, stochastic way.  Put simply, their fates are determined in some sense by chance.  The photons’ specific trajectories are computed and followed using computer code as they are scattered or possibly absorbed.  For example, Figure 5-15 (after Mobley, 1994, p. 322) illustrates three photon trajectories and how they contribute to measured Ed(z).    Input parameters that govern the photons’ trajectories and fates include IOPs -  for example, absorption, scattering, and volume scattering function.  These values can be based on in situ measurements if available, or empirical relations.  IOPs establish the probabilities of photon interactions and trajectories and indirectly the pathlengths between each of the interaction centers.  At each of these centers, photons can be absorbed or scattered with defined probabilities.  Multiple scattering is naturally expected.  The phase function, p() =  ()/b as defined in Chapter 2, is used to determine the new direction of a scattered photon.  Implicit in these calculations are the determinations of probabilities for photon scattering, absorption, and trajectories in specific angular scattering directions.  Most numerical Monte Carlo simulation experiments have assumed the upper ocean to be homogeneous in optical properties.   

Angles of incidence of the photons at the sea surface are established on the basis of time of day, day of year, and geographic location (latitude and longitude).  Overcast (diffuse lighting) skies can be simulated, however patchy, time varying cloudy conditions add difficulties.  Surface wave conditions affect the directions of photons as they enter the water column, so specification of surface wave spectra is needed to obtain realistic simulations.  Often the surface slope and wind frequency data of Cox and Munk (1954) or other wave models are used for this purpose.  At the air-sea interface, well known geometric optical laws of light reflection, refraction, and transmission can be easily applied.  Interestingly, as early as the 1970’s the Monte Carlo method was applied to the atmosphere-ocean system (e.g., Plass and Kattawar, 1972; Kattawar and Plass, 1972).  

Monte Carlo simulations require that a large number of photons (say 106 or more for a given wavelength and even more if multiple wavelengths are of interest; see Plass and Kattawar, 1969, concerning required numbers of photons for such simulations) impinge on the sea surface from above.  Gordon (1994) comments that the relative error in irradiance in such calculations goes as 1/N1/2 where N is the number of photons used for the simulation.   Computing resources and time of computation have been major issues for application of Monte Carlo methods to ocean optics problems in the past (e.g., Mobley, OCEAN OPTICS PAPER A FEW YEARS AGO ON THIS ITEM!).

In review, the Monte Carlo method essentially entails determination of three unknowns (Gordon, 1994): 1) distance traveled by a photon between interaction centers, 2) whether the photon is scattered or absorbed upon interaction, and 3) the photon’s new scattering angle (direction) if it is not absorbed.  These are established through choice from random numbers (again calling to mind the term Monte Carlo).   It also requires that each photon be followed and its position stored in memory until it is either absorbed or leaves the ocean surface through scattering.  Ultimately, the entire light field is computed as a function of depth.  Other computational records of importance include the upward and downward passages of photons past specific depth horizons or vertical computational grid points.  These calculations provide photon fluxes as functions of depth.   After ensemble averages (or time averages over selected simulation periods) of photons have been recorded as functions of depth, radiometric quantities including downwelling and upwelling irradiance and radiance, scalar irradiance, reflectance, average cosines, and radiance distributions can be evaluated.  Since vertical structure information is presumably known for the various optical properties, quantities such as the various diffuse attenuation coefficients can be easily computed as discussed in Chapter 2.   

Several simulations are described by Gordon (1975), providing nice illustrations of how information can be obtained from the Monte Carlo method of solution of the RTE for the ocean.  Monte Carlo simulations have been used to establish equations relating AOPs and IOPs (simple forms of inverse models) and for otherwise identifying useful simplifications that can be used for approximate solutions of the RTE.   For example, Gordon et al. (1975) obtained the following equation for reflectance, R, as a function of backscatter coefficient, bb and absorption coefficient, a, based on Monte Carlo simulations

   R = f  bb/(a + bb)



(5-24)

where f is an empirical factor (note, f is not a constant) that is suggested to lie between 0.3 and 0.5.  The factor f depends on the volume scattering function of the particles and the light field (i.e., radiance distribution as affected by solar zenith angle, sky lighting, and sea state).   The exact value of f can be computed only by using a radiative transfer model.   Other examples of relations between IOPs and AOPs are given in Gordon (1975) and Mobley (1994) as well as in the next section on bio-optical models.  

To summarize, the forward Monte Carlo method is a relatively simple conceptual approach that is relatively easy to visualize.  It is valuable for gaining insights and establishing relations between IOPs and AOPs as well as connecting energy and photon approaches and formulations.  Implementation of Monte Carlo code for computations is not difficult.  However, these methods are not useful for learning about underlying mathematical structures of the RTE and they are computationally demanding and inefficient as non-interacting photons must be tracked as well as those that do interact.  Mobley (1994) also outlines the backward Monte Carlo method.  In this case, photons are posed to originate from a fictitious detector at some depth and tracked to the surface (this is kind of a time reversal problem).  This approach is attractive as virtually all photons are followed and detectors of varying sizes can be depicted. Further, the backward method is far more efficient computationally.  

Within the past decade or so, many optical and bio-optical oceanographers have used a radiative transfer model known as Hydrolight, which is user-friendly and available commercially (Mobley, 1994; 1998).  Hydrolight is used to compute underwater spectral radiance distributions and thus AOPs can be computed as discussed in Chapter 2.  Also, the light field exiting the ocean surface can be obtained; this calculaton is especially important for remote sensing of ocean color.  Input parameters for Hydrolight include in situ IOPs or their proxies, which are converted into IOPs, sky light field and bottom boundary information for light.  Excellent discussions describing Hydrolight, and references to the techniques used by Hydrolight and its many applications are provided by Mobley (1994, 1998, and Mobley’s Hydrolight website: www.sequoiasci.com/products/hydrolight.shtml).  Here we provide some fundamental background information concerning Hydrolight as later discussions will refer to its use for various problems. 

Hydrolight takes a different approach from the Monte Carlo method as it uses a mathematical scheme known as the ‘invariant imbedding method.’  This method has been used for astrophysical radiative transfer problems as well as for oceanographic problems.   Interestingly, the invariant embedding and the Monte Carlo methods originated during approximately the same time period (Mobley, 1994).  The application of the invariant embedding method for hydrologic optics (including ocean optics) was first documented by Preisendorfer (1976).  The continuing work of Mobley (1994), who had collaborated with Presiendorfer, is responsible for making this approach accessible to virtually all oceanographers, many of whom use Hydrolight as a virtual benchtop mathematical tool for a host of problems involving light distributions and optical properties in the sea.  It cannot be overstated how important Mobley’s Hydrolight contribution has been for both theoretical and observational oceanographers.

The RTE is a linear transport equation that uses boundary conditions applied at the top and bottom of the medium (here the ocean surface and bottom or some specified water depth).   Mathematically, the RTE is used to solve a linear two-point boundary value problem.  However, with the invariant imbedding method, this rather difficult linear problem is transformed into an equivalent set of simpler, though nonlinear, initial value problems (e.g., Mobley, 1994; Thomas and Stamnes, 2001).   Mobley (1994) discusses the solution of the RTE using invariant embedding in considerable detail and readers are directed to his book for in-depth information and formulations.  The model can be used with a single wavelength of light or any desired number of wavelengths over the visible spectrum (actually extending from 350 to 800 nm), making it attractive for hyperspectral studies requiring resolution of a few nanometers across the visible as well as those studies involving only multi-spectral or PAR aspects.  Briefly, the mathematical steps include 1) transforming the RTE into a finite number of discrete equations (rather than a single continuous equation) with the number of unknowns matching the number of equations, and 2) solving these discrete equations using the invariant imbedding method subject to appropriate boundary conditions.  It is worth noting that all orders of multiple scattering are included; remember the limitations of the approximations of single and quasi-single scattering theories discussed earlier (e.g., Gordon, 1994).  

General or empirically derived phase functions are selected for each constituent component or appropriate in situ scattering measurements (as discussed in the previous chapter) can be used to generate the phase functions.  The IOPs may include the effects of pure seawater, phytoplankton and their retinue, their natural fluorescence effects, bioluminescence, and Raman scattering, and CDOM and its inelastic scattering contributions.  These can be input at several depths in the ocean allowing vertical variability effects to be considered.  The boundary conditions specify information concerning light input at the sea from direct and indirect solar radiation at the sea surface (e.g., spectral sky radiance distribution) and the wave state of the ocean’s surface (capillary waves, but not gravity waves or whitecaps) as well as light conditions at the ocean bottom (e.g., the bi-directional reflectance distribution function, BRDF; bi-directional relectance is defined as the ratio of upwelling radiance to upwelling radiance, noted as Q = Eu/Lu with angular dependencies (see Morel et al. 1995 JGR special closure volume 100) for problems where the light field penetrates significantly to the ocean seafloor (e.g., coral or sandy reflective bottom, versus muddy (absorptive) bottom).  If measurements of sky radiance are not available, an atmospheric radiative transfer model (e.g. LOWTRAN, Kneizys et al., 1988; MODTRAN ???  REF???) can be used to provide this boundary information.  Polarization effects are omitted without significant error for many applications as the the light field of interest here is generally randomly polarized.  The mathematics of invariant embedding are quite involved; however, tables are presented in Mobley (1994) for summarization of the Hydrolight model.  Validation of Hydrolight is also discussed in detail by Mobley (1994; his Chapter 11). 

Hydrolight is a time-independent, one-dimensional model providing radiance fields as a function of depth only.  However, the time scale for most relevant environmental and biological processes that are of interest for oceanographers are greater than seconds or minutes.  Therefore, it is possible to do sequential Hydrolight simulations at time intervals (steps) desired for virtually all problems of interest of interest to us without significant error.  For example, if surface wave influence or diel biological effects on the subsurface light field are under study, one can apply the model at time intervals of say several seconds to a minute for a few weeks.  If mesoscale or seasonal cycle problems are being studied, then time intervals of approximately one day may suffice (provided aliasing and undersampling effects are taken into consideration).  Some problems also involve significant horizontal variability in optical properties and light fields.  For these purposes, Hydrolight can be run at horizontal grid points of most 3-dimensional models (grid spacing of 10’s to 100 km or more), since in the open ocean the horizontal de-correlation scales of optical properties (roughly kilometers or more) are much longer than photon mean free paths (roughly the reciprocal of beam c).  In the turbid Case 2 coastal ocean, the horizontal de-correlation length scale is much shorter (e.g. Chang et al. (2003?), however, the mean free paths of the photons are naturally much shorter as well (say 10’s of centimeters on the low end).  Thus, it is valid to use Hydrolight for both time series and spatially resolved models as an independent one-dimensional radiative transfer code embedded in the physical-biological model of choice.  Mobley (1998) notes that this approach, opposed to solving the complete problem in full three spatial dimensions and time, is preferred because of computational speed.  

Mobley (1994; Hydrolight website) provides example simulations that are illustrative and readers with access to Hydrolight should run some simulations to reinforce information presented here and to provide understanding and insights that can only be obtained by interactive learning.  By changing IOPs and boundary conditions for different runs, their relative importances can be inferred.  In addition, it is anticipated that many readers will become Hydrolight users to accomplish their research goals.   ASK CURT IF WE COULD USE SOMETHING MORE TANGIBLE HERE OR LEAD READERS TO A WEBSITE TO PLAY WITH HYDROLIGHT FOR EDUCATIONAL PURPOSES ONLY.

There are several advantages and disadvantages of the Monte Carlo method versus the invariant imbedding method (i.e., Hydrolight).  For example, as indicated earlier, the conceptual understanding of the solution is more intuitive and less mathematically challenging for the Monte Carlo method.  The numerical algorithms and formulations are also simpler for the Monte Carlo method.  On the other hand, the computational time is much shorter for equivalent problems using the invariant embedding method (e.g., Mobley et al., 1993).  In fact the computational time for invariant embedding varies linearly with the depth to which radiance information is needed while Monte Carlo computation time increases exponentially with depth.  Invariant imbedding  does not have the problem of statistical noise as does the Monte Carlo method.  Perhaps most importantly for those primarily interested in the applications of ocean optics and bio-optics, the available software of Hydrolight is very easy for users to apply to a diverse set of problems.  Hydrolight can also be used as both a research and teaching tool as a range of input conditions (IOPs and boundary conditions) can be used to provide the user with new insights and intuition via multiple sensitivity model runs.  Example applications of Hydrolight have included studies of the effects of Raman scattering on the underwater light field (e.g., Berwald et al. 1998), remote sensing of bubbles in seawater Flatau et al., 2000), upper ocean heating rates (Ohlmann et al., 1999; Chang et al., 2003??), light fields for primary productivity models (I NEED A REFERENCE FOR THIS OR TAKE THIS ITEM OUT), phytoplankton blooms (including coccolithophores; e.g., Tyrell et al., 1999)), ecosystem models (e.g., Liu et al., 1999; Bissett et al., Oceanography plus??), bioluminescence (Stephany et al., 2000), underwater imaging (REF??)ocean color remote sensing (e.g., to simulate expected water-leaving radiance and ocean color algorithm sensitivities to signal noise;  Mobley, 1999), interpretation of data  collected with instruments that need to have ambient light removed, experimental design, DESIGNING INSTRUMENTS??  MAYBE GIVE SOME CITATIONS RIGHT HERE???,and the inverse problem (to obtain IOPs including phase functions from AOPs; e.g., Hoge et al., 2000)??).   Some investigators are using Hydrolight for hyperspectral problems in the coastal ocean as well (e.g.. Lee et al., 1998, 1999; new TOS volume for HyCODE; OTHERS ???  Several of these are described in a comparative review by Mobley et al. (1993).  Studies of the ocean’s ecosystem are being done using a model called ECOSIM (Bissett, ???).  This model incorporates spectral light information, which can be derived from Hydrolight???  NEED MORE ON THIS FROM CURT AND PAUL?? SEE CURT’S WEBSITE TO GET A BRIEF DESCRIPTION OF HOW THIS WORKS.

MAYBE PUT THE 2-FLOW INTO APPENDIX? OR JUST REFERENCE IT?  SEEMS NOT TOO IMPORTANT IN PRSENT CONTEXT

It also worth noting that irradiance transfer, opposed to full blown radiative transfer, can be solved relatively easily using two-flow (also called two-stream) equations that involve vertical gradients in upwelling and downwelling irradiances (e.g., Thomas and Stamnes, 2001).  Following Mobley (1994), the coupled two flow differential equations can be written as

  


dEd(z)/dz = dd(z) Ed(z) + ud(z) Eu(z) 


(5-25)

and

  


-dEu(z)/dz = uu(z) Eu(z) + du(z) Ed(z) 


(5-26)

In the first of these (equation 5-25), we see a balance of the depth rate of change or divergence of downwelling irradiance with a term expressing a decrease in Ed with depth caused by absorption or elastic scattering of photons from the upward to the downward direction (first term on right).  The first term on the right is a measure of the absorption or elastic scattering from the downward into the upward direction while the last term represents an increase in Ed caused by elastic scattering of photons from the upward to the downward direction.  Note that the notation here is for dd to indicate photons directed downward (first subscript) and continuing through the layer (dz) downward (second subscript) and to take a negative value since this is a loss term.  Also, ud ,indicates scattering of photons that were originally directed upward to ones then going downward.  The second of the two-flow equations (5-26) is explained similarly.  Note that the coefficients dd(z), uu(z), du, and ud all have units of m-1 and are called respectively the local transmittances for downwelling and upwelling irradiance and the local reflectance functions for downwelling and upwelling  irradiance.   Equations 5-25 and 5-26 are thus coupled equations that characterize gains and losses of photons from specified vertical layers and involve upward and downward moving photons.  The two-flow approach is attractive for several reasons.  For example, it is easily understood conceptually and insights can be obtained by using the model and a variety of useful relations between IOPs and AOPs can be obtained.  

Mobley (1994) describes inverse problems in considerable detail and notes that in general they remain very much unsolved at this point in time.  Inverse problems include medium characterization or obtaining IOPs of the ocean for our purposes and remote sensing where measurements of water-leaving radiance are often intended to provide information about near surface in situ IOPs or chlorophyll concentrations.  On the individual particle level, one may also wish to ascertain information about the particle based on light that has been scattered from the particle.  The two modes of solution of the inverse problem are explict and implicit.  In the case of the explicit method, we derive relationships between IOPs and measurable radiometric variables with Gershun’s law being a good example as mentioned earlier.  Implicit solutions involve solution of a sequence of direct problems.  That is, given a radiance distribution, we can perform a large number of calculations using different IOPs until we converge to a solution.  This is truly a brute force approach.  

We have already given a few examples of the inverse problem where relationships were developed such that IOPs could be evaluated given AOPs.  Gordon (1994) gives several examples based on RTE calculations with the quasi-single scattering approximation and the Monte Carlo method.   Again, the inverse method is of considerable practical importance as remotes sensing from aircraft and satellites as well as many in situ instruments rely strictly upon radiometric measurements of apparent optical properties and in many cases we are most interested in the IOPs as these are more directly related to in-water optical constituents.  One of the difficulties with inverse methods concerns finding unique solutions.  For example, can a problem solution for say the radiance distribution be the same for two different IOP fields and two different surface light conditions (boundary conditions)?  Also, input radiometric errors or biases lead to greater sensitivity for inverse methods than direct methods.  New efforts are being directed toward the inverse method in large part because of remote sensing methodologies that are moving toward hyperspectral resolution (e.g., Mobley, 1994; ???).  More information concerning inverse methods as applied to optical problems can found in Shifrin (1983), McCormack (1992), and Mobley (1994).     

POSSIBLY MAKE THIS PART 2 OF CHAPTER 5

5.3 Bio-optical Models

SEE Morel Encyclopedia paper and SEELYE CHAPTER 6 ON OCEAN COLOR ALGORITHMS

SEE CHAPTER 2 FOR SOME BIO-OPTICAL MODELING MATERIAL!!!  ALSO CHAPTER 4 ON REMOTE SENSING??  

5.3.1  Introduction to Bio-optical Models

The intent of this section PART 2 ??  is to provide a brief summary of some of the many bio-optical models and to explain their specific purposes and utility.  The term ‘bio-optical model’ has different connotations, even among bio-optical oceanographers.  Here, we follow the terminology of Andre Morel (2001), who delineates two types of ‘bio-optical models’:  ‘single cell’ models and ‘bio-optical state’ models.  We briefly address single cell models, which relate in large part to the discussions of the previous subsections, and focus primarily on bio-optical state models.  

5.3.2  Single Cell Models

Single cell models can be used to analyze and predict optical properties of individual phytoplankton or heterotrophic single-celled organisms.  This class of model uses fundamental theories of optics as applied to individual cells (see Morel, 1988, 1994, 2001; Morel and Bricaud, 1986).  As discussed in the previous sections on Mie theory and radiative transfer theory, it is usually possible to sum the optical effects of the numerous individual cells to form the bulk inherent optical properties (IOPs).  In particular, the IOPs are calculated using information about the individual cells or organisms, which would include cell size and other relevant optical information such as refractive index (as affected by physiological or nutrient and light stress effects).  Generally, the most optically important (here meaning for scattering and absorption) sizes of particles fall in the range of 1 to 10 m and include small heterotrophic organisms, phytoplankton cells, and their retinue of small associated matter or debris, but smaller particles play large roles for backscattering (Morel, 2001).  During our discussions of Mie theory, we introduced efficiency factors for absorption, scattering, and total attenuation, Qa, Qb, and Qc, respectively for individual particles (actually spheres as an idealization).  Again, if the suspended  particles have indices of refraction near that of water, then the van de Hulst approximation (equation 5-18) can be used as a substitute for the more computationally demanding Mie theory to compute such efficiency factors.   

Some of the salient points resulting from single cell model studies are summarized by Morel (2001) as follows: 1) scattering due to small organisms (say 0.2 to 2 m) generally follows a wavelength power law dependence of -2, 2) scattering by larger organisms follows varied spectral dependencies with those particles exceeding about 10 m showing a flat (0) shape; algal cells possessing various pigment compositions influence the spectra with some minima and maxima as would be expected (remember the absorption spectra for the various types of pigments), and 3) the absorption efficiency can be affected by the ‘packaging effect’ resulting form the distribution of pigments within the cells; however, this effect can be modeled.  Importantly, the single cell models are clearly related to the bio-optical state models, essentially through the integral effects of the individual cells and their collective effects on the bulk IOPs and necessarily bulk AOPs as expressed earlier in equations 5-19 and 5-20.  This leads us to bio-optical state models for bulk optical properties.  

5.3.3  Bio-optical State Models

Bio-optical state models serve many different purposes.  Bio-optical state models (hereafter, called bio-optical models for short) can be used to relate more commonly and easily measured variables such as chlorophyll a, beam attenuation coefficient, and PAR to IOPs.  As indicated in the previous section, radiative transfer models such as Hydrolight require inherent optical property information, which is often not directly available because of the paucity of such data.  We will present several examples of this class of empirical model.  Remote sensing of ocean color (from sensors placed on a satellite or airplane) also requires bio-optical models to translate measurements (i.e., spectral water-leaving radiance) into useful products such as chlorophyll a concentration, CDOM concentration, spectral diffuse attenuation coefficient, turbidity, bottom bathymetry, and, in principle, phytoplankton by groups of species.  Many different bio-optical models have been developed, first for the CZCS and later for the SeaWiFS and OCTS ocean color satellites, and now for a host of more recently launched ocean color satellites including the MODIS imagers and others (as discussed in Chapter 4).  Some of the models used for remote sensing are outlined below.  For similar reasons, bio-optical models are valuable for in situ studies, as often complete optical data sets are impossible to obtain.

Bio-optical state models are typically based on field data or radiative transfer simulations that are used to produce equations that allow computations of IOPs or AOPs from more easily measured quantities such as chlorophyll a or computations of AOPs from IOPs or vice versa (e.g., Gordon and Morel, 1983; Morel 1988, 1994, 2001; Smith et al., 1991; Mobley, 1992, 1994; Kirk, 1994).   Again, chlorophyll a is the most abundant photosynthetic pigment in most plants.  Although there are several complicating issues to be considered for the measurement and use of chlorophyll a as discussed in Chapter 3, it remains one of the most accessible variables and is often taken as a rough index of the bio-optical state of ocean waters (e.g., Morel, 2001).  Beam attenuation coefficient and absorption coefficient are other valuable measurements that can also be used in bio-optical state models.  For developing statistically significant relationships between chlorophyll a and optical properties of interest,  in situ samples and data need to be made concurrently.  

For Case 1 waters, chlorophyll a concentrations can span a range of roughly 0.02 to 20 mg/m3 (or in g/l) encompassing oligotrophic to eutrophic conditions.  It is important to note that one should be cognizant of the phytoplankton populations (to species level if possible) and locations, depth ranges, and environmental conditions of the collection of the data for bio-optical state models.  These factors can influence the physiologies (packaging and nutrient and light stress effects), community structure (which phytoplankton populations are present and in what proportions), properties of the cells, and ultimately the derived empirical relationships.   We focus this portion of our discussion on the less complicated Case 1 waters as most of the bio-optical state models have been developed for these environments and outline some of the emerging bio-optical models for Case 2 waters in the next subsection.  

The determination of the total absorption coefficient is critical for many purposes, including determination of the subsurface light field for primary production, the penetrative component of solar radiation, and radiative transfer modeling of light propagation in the upper ocean.  However, it is difficult to obtain direct measurements or estimates.  In Chapter 2, we presented an equation intended to account for all contributions to the total spectral absorption coefficient according to



a() = aw() + aph() + ad() + ag()
+ as()
   (m-1)


(2-30a) 

For Case 1 bio-optical models (note that we can assume as() = 0), it has proven convenient to modify equation 2-30a (e.g., Morel , 2001) so that 



  

a() = aw() + ag() + ap()
      (m-1)

(5-27) 

where 



 

ap() = aph() + anap() 
       (m-1)

(5-28) 

Here aw is the absorption coefficient for seawater,  ag() is the absorption coefficient for CDOM or gelbstoff, ap() is the absorption coefficient for phytoplankton cells, and anap() is the absorption coefficient for all non-algal particles that can include any colored debris (like detritus) and all heterotrophic organisms.  Several investigators have developed techniques (using samples collected on filters and measurements before and after methanol extraction) and models to partition contributions by ap() and aph(), and then obtained anap() by difference (using equation 5-28).  An example of such a partitioning is illustrated in Figure 5-16 (FROM MOREL P. 321, FIG. 3A.; WHERE IS THIS FIGURE REFERENCE??).  

Large volumes of field data collected in Case 1 waters have shown that ap() and aph() both increase in relation with chlorophyll a in nonlinear fashion, but can be represented using power law formulas (Morel, 2001) 

ap() = Ap() [Chl]Ep()



(5-29)

and 

aph() = Aph() [Chl]Eph()



(5-30)

where Ap(),Aph(),Ep(), and Eph() are wavelength dependent empirical powers obtained from curve fits.  The exponents Ep(), and Eph() are reported to lie between about 0.6 and 0.9.  Plots of ap() and aph() for wavelengths of 440 and 560 nm are shown in Figure 5-17 (from Bricaud et al. (1998) [MOREL FIGURE 3b, P. 321).  The 440 nm wavelength was chosen because it is at the peak of maximum algal absorption while the 550 nm wavelength is around the minimum.  The fact that the chlorophyll-specific absorption coefficient for phytoplankton, aph* = aph/Chl, is not constant results from the pigment packaging effect and changes in relative pigment compositions (i.e., accessory pigment concentrations vary).  Morel (2001) indicates that over 70% of the value of ap is accounted for by aph, so anap is a smaller contributor near 440 nm with even higher percentages of aph being responsible near 675 nm.  

Prieur and Sathyendranath (1981) compiled 90 data sets from Case 1 waters that included measurements of absorption by phytoplankton pigments, aph(), by non-pigmented organic particles (essentially detritus), ad(), and by gelbstoff or CDOM, ag() along with chlorophyll (chlorophyll a plus phaeophytin as used here) concentration, Chl.  Morel (1991) used these data to develop a somewhat simpler spectral absorption model than the one forwarded by Prieur and Sathyendranath, which takes the form

       a() = [aw() + 0.06 ac*() Chl 0.65] [1 + 0.2 exp(-0.014( – 440))] 
(5-31)

where a() is in units of m-1, aw() is the absorption of pure seawater in units of m-1, Chl is chlorophyll concentration in units of mg m-3, and ac*() is the non-dimensional, statistically-derived chlorophyll-specific absorption coefficient.  The reader is cautioned to be careful in applying equation 5-31 (because of units) and reference to the original manuscripts by Prieur and Sathyendranath (1981) and Morel (1991) or the summary presented in Mobley (1994) is recommended.  Other similar models are cited by Mobley (1994) ARE THERE ANY NEWER ONES??  ASK CURT MOBLEY.  It is useful to reflect on a family of total absorption curves generated with the Morel (1991) model (equation 5-31) as depicted earlier in Figure 2-30 (CHECK TO BE SURE FIGURE # IS CORRECT AND THAT THE FIGURE IS THRE IN CH 2).   Again, the model is valid only for Case 1 waters and assumes that ag() covaries with aph() and that ac*() is independent of particle type.   If data were collected in a specific region or “biogeographical province,” one might expect tighter statistical fits.  This type of approach has been suggested by Longhurst (200?? CHECK THIS REFERENCE) and others.  By inspecting Figure 2-30, it can be noted that there is a great dynamic range of variation in absorption with respect to chlorophyll concentration (and vice versa) in the vicinities of the two chlorophyll a peaks near 440 and 685 nm.  This effect, which is even more dramatic when the absorption contributions by pure seawater, detritus, and CDOM are removed, is often utilized for inferring chlorophyll concentrations based on absorption measurements near these two wavelengths.  

Empirical models have been formulated for detritus and the often related non-algal particle concentrations as well as for gelbstoff or CDOM.  Filtered water sample data are typically used for these and other similar models discussed below for anap() and ag().     As an example, a model for detritus absorption has been presented by Roesler et al. (1989) in the form 




ad() = ad(0d) exp [-Sd ( – 0d)] 



(5-32)

where 0d is a reference wavelength (0d = 400 nm), ad(0d) is the absorption contribution by detritus at 0d, and Sd is an empirical curve-fitting constant (Sd = 0.011 m-1).   A range of coefficients of the exponential terms has been forwarded, supporting the notion that different material compositions of detritus prevail at different times and places.  Nonetheless, the curve shape remains fairly stable. Analogous relations have been derived for absorption by nonalgal particles.  For example, following Morel (2001), we can express anap() according to 

anap() = anap(0nap) exp [-Snap ( – 0nap)] 


(5-33)

where 0nap is a reference wavelength (0nap = 440 nm), anap(0nap) is the absorption contribution by nonalgal particles at 0nap, and Snap is an empirical curve-fit constant (Snap = 0.012 m-1).  For gelbstoff or CDOM, Kalle (1966), Bricaud et al. (1981), and Green and Blough (1994) among others have derived a similar relationship that is analogous to equation 5-32.  Their equation was derived for the wavelength range of 350-700 nm and is given by




ag() = ag(0g) exp [-Sg ( – 0g)] 



(5-34)

where 0g = 440 nm is a reference wavelength, Sg is an empirical curve fitting constant in units of m-1 (Sg = 0.015 m-1) and ag(0g) is the absorption due to CDOM at the reference wavelength, 0g.   The reference wavelength of 0g = 440 nm is typically selected since it is near the midpoint of the blue waveband where phytoplankton action spectra peak.  In analogy to the situations for equation 5-32 and 5-33, the coefficient in the exponential term, Sg, in equation 5-34 is expected to differ based on specific CDOM compounds.  Carder et al (1989), Kirk (1994), and Roesler et al. (1989) have suggested values of Sg ranging from 0.010 to 0.022 for seawater (the mean likely lies between 0.012 and 0.015 m-1).  Summaries of values of ag(440 nm) are given by Kirk (1994; see his Table 3.2) and Mobley (1994; see his Table 3.6) with ranges from nearly zero in the Sargasso Sea to over 19 m-1 in Lough Nest, Ireland.  As noted by Mobley (1994), there is no model available at present to quantify ag() based on the concentration of CDOM.   Finally, it should be remembered that absorption due to detritus, nonalgal particles, and gelbstoff or CDOM decreases following a roughly exponential curve with increasing wavelength whereas absorption due to pure seawater increases monotonically for wavelengths greater than about 550 nm.  Also, noting that absorption by phytoplankton decreases with increasing wavelength from about 440 to 550-600 nm, we anticipate that for Case 1 waters, there should be a minimum in total absorption around 550-600 nm.  Wavelengths in this range are often selected for reference measurements for remote sensing while the larger dynamic ranges around 440, 490, and 680 are chosen since at these wavelengths there are larger dynamic ranges as chlorophyll concentrations vary (see Figure 5-18 [MOREL P. 325, FIG. 6].  

The last  IOP model parameters we consider are the scattering and backscattering coefficients.  Again, the scattering coefficients can be divided into components due to water and particulates including both algal and nonalgal types, bp; however, no experimental method is available to subdivide these further.  Bio-optical models relating bp with chlorophyll can take the general form of   

bp() = Bp() [Chl]x OR BY MOREL 2001?? bp() = Bp() [Chl]x
(5-35)

where Bp() and x are empirical values (i.e., Bp() is value taken for Chl = 1mg/m3; and x<1).  Log-log plots of bp(550nm) are shown as functions of Chl and organic carbon concentration in Figure 5-19 [see Morel 2001 p. 323].  Relative differences in contributions by detritus and heterotrophic organisms likely cause bp to decrease less rapidly with increasing chlorophyll concentrations.  Another empirical model developed by Morel (1988) for the total backscatter coefficient takes the form of 

   bb() = 0.30 Chl0.62 [2 X 10-3 + 2 X 10-2 (0.5 –0.25 log Chl) (550nm/)]   (m-1)
(5-36)

There is considerable scatter with respect to the data; however, these models remain useful for many problems, especially because of the paucity of direct scattering measurements to date.  Again, more work concerning scattering is needed in the coastal ocean.      

Bio-optical models for the total spectral scattering coefficient are also quite useful.  For example, the model of Gordon and Morel (1983) enables computation of b() following

b(nm) = 0.30 Chl0.62    (m-1)



(5-37) 

where Chl is chlorophyll a concentration in mg m-3.  

Bio-optical state models for chlorophyll based on beam attenuation coefficient, beam c (typically measured at 660 nm with transmissometers), have been developed, but generally do not  provide consistent results for several reasons.  In particular, beam c  rather crudely provides an indication of the number or volume of particles via total scattering which is the primary measure of a beam transmissometer; however, it does not give specific information concerning the number or volume of chlorophyll-bearing particles.  Further, the chlorophyll measurements have several complicating factors as discussed earlier.  However, Voss ( ??? IN MOBLEY REV. PAPER) developed an empirical model that relates beam c as a function of wavelength in the following form

c()  = cw() + [c(490nm) – cw (490nm)] [1.563 – 1.149X10-3 ]   (m-1)
(5-38)

where cw() is the beam attenuation coefficient of pure seawater.  Another empirical equation developed by Voss (???) relates beam c at 490 nm to chlorophyll a as

c(490nm) = 0.39 Chl0.57  



(5-39)

By substituting commonly measured values of beam c at 660 nm into equation 5-38, one can solve for c(490nm).   Then, by substituting this value into equation 5-39, it is possible to solve for chlorophyll concentration.   Unfortunately, the variation in c(490nm) has been found to vary about an order of magnitude for a chosen value of chlorophyll.  Often plots are made of beam c(660 nm) versus chlorophyll fluorescence are to differentiate bottom sediment material concentrations versus phytoplankton populations (REFS Jones, Chang????).

Beam attenuation coefficient, c(660nm), data have been used as a proxy measurement of suspended particulate matter (SPM), particulate organic carbon (POC), and even primary productivity (e.g., Siegel et al., 1989).  For example, Bishop (1999) conducted a series of experiments to ascertain relations between beam c(660nm) and SPM and POC.  It was determined that considerably more robust relationships existed between beam c(660nm) and POC (r2 of 0.9 and greater) than between beam c(660nm) and SPM.  This result is quite surprising considering the large number of competing factors and thus interpretive complications.  Nonetheless, the potential use of beam c to estimate POC is important as it is of direct importance for the carbon cycling and flux problem.   Bishop et al. (2002) have used this approach in interpreting data collected from profiling floats deployed in the North Pacific (discussed in the next chapter).  It is also noteworthy that empirical relations have been developed to estimate POC from chlorophyll data (e.g., Malone, 1982; Morel, 1988).  Morel (1988) presented the following empirical equation  

   POC = 90 Chl0.57
 (mg C /m3) 



 (5-40)
where Chl is in units of mg/m3.  This relation has been developed using over 400 data points with a correlations coefficient of r2 = 0.68. 

BOSS PAPERS ADD OTHERS??

Bio-optical models have also been developed for AOPs, which again have typically been more easily measured in the field than IOPs.  In Chapter 2, we discussed how the total downwelling diffuse attenuation coefficient can often be approximately decomposed into constituents (concept of quasi-inherent optical properties; see equation 2-??).   Morel (2001) has forwarded the following decomposition scheme for the diffuse attenuation coefficient, Kd (below we suppress the subscript) as given by 

K() ~= Kw() + Kbio() 



(5-41)

where Kw() is the contribution by seawater and Kbio() represents all contributions resulting from biological processes involving particulate and dissolved matter.  It turns out that values of K() are interrelated with respect to different wavelengths (Austin and Petzold, 1986) and that the following formula can be used to determine different values provided a value at a single wavelength is already determined or known

K() = M()[K(490nm) - Kw(490nm)] + Kw()

(5-42)

where values of the slope, M(), depend on pigment concentrations.

The previous relation is very useful for interrelationships, but often we may not have the required irradiance data.  However, empirical relationships connecting Kbio() with chlorophyll a concentrations for Case 1 upper ocean waters have been established (e.g., Morel, 2001; OTHER REFS).  For example, the following power law equation can be used 

Kbio() = () [Chl]e()  and 
K() = Kw() + () [Chl]e()  
(5-43)

where () and e() are empirical factors that depend on wavelengths are determined using large volumes of data.  Morel (1988) shows plots for equation 5-43 that indicate strong dependence for 440 nm for over 3 orders of magnitude change in chlorophyll concentration (e.g., chlorophyll concentrations of 0.1 mg/m3 give K ~ .02 m-1 while concentrations of 10 mg/m3 give K ~ 0.2 m-1).  Note that in principle, one can measure chlorophyll concentrations to estimate K or K to estimate chlorophyll.  A more complicated empirical model relating chlorophyll concentration with the diffuse attenuation coefficient is given by Morel (2001) as 

K() = k() exp{-k’() log10([Chl]/Chl0]2)} +0.001 [Chl]2 

(5-44)

where Chl0 is a reference chlorophyll concentration (0.5 mg/m3), and k() and k’() are empirical spectral parameters. 

Why do models for chlorophyll using Kd as input work quite well while those using beam c perform rather poorly?  Mobley (1992) answers this by considering the following approximate formula (Gordon, 1989)

K () = a() + bb()  




(5-45)

                 cossw

where is solar angle measured within the seawater.  Typically, a() is much greater than bb(), so to a fair approximation K() (especially in the blue wavelengths) is a measure of absorption and thus chlorophyll for Case 1 waters.

A simple, but sometimes useful model relating the value KPAR as averaged over the euphotic layer (again, defined as the depth where PAR decays to a value of 1% of the surface value) is given by Morel (1988) as

<KPAR>eu =  0.121 [Chl]         (m-1) 


(5-46)

Another useful empirical relationship for Case 1 waters has been established for euphotic layer depth, Zeu, as a function of chlorophyll a (Morel, 2001) or 

Zeu =  38 [Chl]         (m) 



(5-47)

Again, in some cases Chl may be known (i.e., from water samples) and the depth of the euphotic layer is desired; in others, the euphotic layer depth may be known and chlorophyll concentration may be needed.  Some caution is necessary as these empirical relations assume uniform distributions of both chlorophyll concentration and K with respect to depth and time.  Such assumptions are more likely to be valid if the upper layer is well mixed.  

5.3.4 Models and Retrievals of Ocean Color Variables Using Remote Sensing Data
Considerable effort has been devoted to the determination, often called retrieval, of biologically relevant ocean color information using spectral radiance data collected from aircraft and satellite-borne spectral radiometers (Chapter 4).  Several of these can be used for in situ data sets as well.  Next, we discuss three different methods of estimating pigment biomass (defined as the sum of chlorophyll a and phaeopigment a).   Morel (1980) classified three different bio-optical state methods or models: empirical methods, semi-analytical methods, and analytical methods.  These methods have been used by many investigators with different models enjoying varying levels of support than others in the quest to provide the best estimates of quantities including chlorophyll a and pigmented biomass as compared with in situ data.  Empirical models have been reviewed by several authors (e.g., including Morel and Gordon, 1980; Gordon and Morel, 1983; Smith et al., 1991; O’Reilly et al. 1998; Morel, 2001), and the NASA Technical Memorandum Series Volume ??? is expected to be updated periodically to provide evolving modeling information and documentation).   Our discussion here is intended to serve as a primer for this actively researched and fast changing topic.    

The popular empirical ‘ratiometric’ or ‘color ratio’ method utilizes correlations of chlorophyll a with ratios of radiometric quantities.  Much of the work with this approach began with the need to develop color algorithms for the CZCS and later the SeaWiFS and other ocean color satellites.  It should be noted that some algorithms are designed for chlorophyll-like pigment concentrations represented as the sum of the concentrations of chlorophyll a and phaeopigment-a rather than chlorophyll a only, as it is often difficult to unequivocally distinguish the specific contributions of chlorophyll a versus those of the sum (see O’Reilly et al., 1998, include algorithms for each approach).  Color algorithms for the CZCS were developed for both chlorophyll and phaeopigments, so some algorithms for SeaWiFS and other ocean color satellites using both pigment types are needed to enable consistency, continuity, and longer term time series.  

The physical principle of the ratiometric method involves the fact that chlorophyll a absorbs more blue than red light (with less spectral dependence of scattering upon wavelength), so that the backscattered light spectrum shifts from blue to green as chlorophyll a concentration increases.  More specifically, we see that the net effect at wavelengths like 440 and 490 nm is for reflectance or remote sensing reflectance, R or Rrs, to decrease dramatically as chlorophyll increases while little change occurs at wavelengths between 550 and 565 nm.  This is nicely illustrated in Figure 5-18  (after MOREL P. 325).  One form of the ratiometric method or ocean color algorithm can be written as a generalized power law according to

Chl = A(i, j) [rij]B(i, j) 



 
(5-48)

where the subscripts i and j on denote different wavelengths and A(i, j) and  B(i, j) are empirical values based on fits to data.  Or by taking the natural logarithm of both sides of 5-48, we can obtain 

      ln Chl = ln A(i, j) + B(i, j)  ln[rij]



(5-49)

where rij can take several different forms involving radiometric quantities that we have defined earlier.  Examples include:

rij  = Lu(i)/ Lu(j)   





(5-50a)

rij  = Lwn(i)/ Lwn(j)   





(5-50b)

rij  = Ed(i)/ Ed(j)   





(5-50c)

   


rij  = R(i)/R(j)  





(5-50d)

where R(i) = [Eu(i)/ Ed(i)] and R(i) = [Eu(j)/ Ed(j)]     

rij  = Rrs(i)/Rrs(j)  





(5-50e)

where again Rrs is remote sensing reflectance or R evaluated at the ocean surface.     


and

        rij  = [R(i)/Q(i)] / [R(j)/Q(j)]   



(5-50f)

where
Q(i) = [Eu(i)/ Lu(i)]  and Q(j) = [Eu(j)/ Lu(j)]   

        

Several different empirical (essentially ratiometric) algorithms (15 total) and two semi-analytic algorithms have been intercompared with a large data base (called SeaBAM, see Table 3 in O’Reilly et al., 1998) of coincident near surface in situ chlorophyll and remote sensing reflectance measurements.  Note that the notations used in O’Reilly et al.’s Tables 2 and 7 differ from ours somewhat, but the concepts are nearly the same  - these are essentially empirical curve fits to large data sets.  This specific intercomparison work was motivated by the need for optimal ocean color algorithms to provide the best accuracy possible in support of the SeaWiFS ocean color satellite program.  The data set used for the O’Reilly et al. (1998) study consisted of data collected from 919 ocean station samples with chlorophyll concentrations ranging from 0.019 to 32.79 mg/m3.  The chlorophyll data were obtained from both fluorometric and HPLC measurements (HPLC was used in cases where data were available from both methods).  Most of the data were obtained in Case 1 waters (only ~20 samples came from Case 2 waters).  The regional distribution of data is biased by necessity to locations, which are more accessible for in situ sampling and where major field campaigns have been conducted (i.e., see Figure 1 in O’Reilly et al., 1998).   The algorithms considered by O’Reilly et al. (1998) utilize spectrally dependent normalized water-leaving radiance, Lwn, and remote sensing reflectance, Rrs, as the key variables related to chlorophyll concentrations.  The empirical algorithms that employed more coefficients and wavebands generally provided tighter fits with data and were superior to the semi-analytical methods.  

Statistical comparisons of algorithm estimates of chlorophyll using the suite of model formulations with in situ chlorophyll were done using a type II regression model (equal weighting to x-axis and y-axis data; see Laws and Archie, 1981 OR LAWS BOOK MAY BE BETTER FOR THIS.).  The method or model deemed by O’Reilly et al. (1998) to give the best results was the OC4 algorithm that used four different wavebands (= 443, 490, 510, and 555 nm), which required accurate atmospheric corrections and on-orbit calibrations at four wavelengths.  A simpler model involving just two wavelengths (= 490 and 555 nm), OC2, was found to be a good choice for many regions and less stringent in regard to atmospheric corrections and on-orbit calibrations.  The OC2 algorithm was chosen for the at-launch chlorophyll computations for SeaWiFS.  Another strategy is to select algorithms (called switching algorithm method) depending on chlorophyll concentrations because dynamic range is often better for reflectance ratios using  wavelengths of 490 nm to 550 nm for low concentrations and better for 443 to 550 nm for high concentrations because of signal-to-noise ratios and atmospheric correction considerations (IOCCG Report 1, 1998).  Some algorithms have also used data from three or more wavelengths, i.e.,  the sum of normalized water-leaving radiance at two wavelengths (say 443 and 520 nm) divided by water-leaving radiance at 550 nm (O’Reilly et al., 1998).   Another interesting concept is to use ratios of reflectance at say 410 to 550 in concert with those at 443 to 550 nm (or 520 to 550) to infer conditions where gelbstoff or CDOM become important.  Note that the 443 wavelength is more influenced by CDOM or gelbstoff than 490 nm.  Of course, this would be more applicable in Case 2 waters.   It is important to re-emphasize the importance of simultaneously collected remote sensing data and in situ ocean data in terms of numbers, quality (accuracy and resolution), and diversity of ocean regions sampled as empirically-based ocean color algorithms are absolutely constrained by data.  

5.3.5 Semi-analytic models
Semi-analytic models use a mix of theories of fundamental physics or mechanistic biology and empirical data (e.g., Gordon, 1986, Gordon et al., 1988; Smith et al., 1991; O’Reilly et al., 1998; Morel, 2001; Sokolersky et al. paper in Int. J. remote Sensing, 2003; SEE THIS NEW -PAPER AND ADD A BIT ABOUT IT).   An early study conducted by Gordon (1986) was used to develop the following semi-analytic model

R/Q = (Eu/Ed)/(Eu/Lu) = Lu/Ed = l1 [bb/(a + bb)] + l2 [bb/(a + bb)]2

(5-51)

where l1 =0.0949 and l2 = 0.0794.  This equation was developed for zenith angles greater than 200 and error estimates are less than 10% when realistic phase functions are used.  In some cases, the quadratic second term in equation is neglected resulting in somewhat greater error (~less than ~20%; Gordon, 1986; Gordon et al., 1988), giving a simpler set of relations  

R/Q = Lu/Ed = l1 [bb/(a + bb)] = 0110 bb/Kd 



(5-52)

As indicated earlier, bb and Kd can be modeled as functions of chlorophyll a concentration.  Thus, if Lu and Ed measurements are available (as they often are by using ship profiling, moored, or drifter instrumentation), then one can in principle compute chlorophyll a.  

The semi-analytical model based on Monte Carlo simulations by Gordon et al. (1975), discussed earlier or

   R = f  bb/(a + bb)




(5-24)

can be used to form an approximate version (i.e., Gordon et al. (1975), Prieur (1976), and Morel and Prieur (1977)) given by

R = 0.33  bb/a





(5-53)

This equation provides better approximations when a>>bb or bb/a <<1.  The coefficient 0.33 appears to be quite robust as the light field varies.  This equation is best suited for near surface conditions as at greater depths, backscattering to absorption will likely vary because of particle-chlorophyll  variations.  

Garver and Siegel (1997) developed a semi-analytical algorithm using the quadratic form of the model formulated in equation 5-51.   They utilize specified specific absorption and backscattering coefficients and a nonlinear statistical method to determine chlorophyll a due to phytoplankton concentration, aph(441 nm), absorption coefficient related to particulate and CDOM at 441 nm, and the backscattering coefficient of particles at 441 nm.  The Garver-Siegel model has been tested with data from the Sargasso Sea.  The model was also used in the intercomparison study of O’Reilly et al. (1998) described in the previous subsection.  Although none of the semi-analytical models considered by O’Reilly et al. (1998) performed as well as their empirical counterparts, it should be noted that semi-analytical models have the advantage of having the potential capacity for determining/retrieving several optical parameters other than chlorophyll a (i.e., absorption due to non-chlorophyll matter, CDOM, backscatter).  

5.3.6  Analytical Models

Analytical models are based on first principles (e.g., Smith et al., 1991).  One interesting analytical model that considers the natural fluorescence of phytoplankton and its relation to cholorophyll a concentration as well as primary productivity was presented by Kiefer et al. (1989).   The governing equation for this model is 

Chl = 4 Lu(683) 27 [KPAR + a(683 nm)]



(5-54)

                     PAR  f  a0(PAR)

where a(683 nm) is the absorption coefficient due to both phytoplankton and seawater at 683, f  is fluorescence quantum yield, and a0 is the mean chlorophyll a specific absorption for the phytoplankton.  This model can be applied at various depths.  Unfortunately, the accuracy of this type of model is dependent upon several parameters that vary quite widely depending on environmental conditions (temperature, light, nutrient stresses).  Measurements of Lu and PAR are fairly straightforward, however, it is difficult to measure parameters such as f and a(683 nm) in situ.  Analytical bio-optical  models tend to be used less frequently than the other bio-optical models.      
5.3.7  Case 2 Algorithms and Models for Ocean Color Parameters

THIS SECTION SHOULD BE UPDATED BASED ON OCEANOGRAPHY ISSUE PAPERS AND THE INT J REMOTE SENSING VOLUME PAPERS.

The algorithms discussed above use a limited number of wavelengths and perform quite well for open ocean, Case 1 waters.  However, they are often inadequate or fail for Case 2 waters.  There are several reasons why special algorithms and models are needed for Case 2 waters.  In particular, 1) Case 2 waters typically possess much higher chlorophyll concentrations than Case 1 waters (i.e., dynamic ranges of chlorophyll a concentrations in coastal waters can range from roughly 1 to 100 mg/m3), 2) there are many more significant competing optical constituents (e.g., high concentrations of CDOM, suspended sediments, etc.) in Case 2 waters, 3) the diversity of phytoplankton species  can be greater, but sometimes less (e.g., red tides or HABs) for Case 2 waters, so measurements at specific wavebands may be essential (e.g., certain dinoflagellates, see Figure IN CHAPTER 2??), 4) there is often significant backscattering of near infrared light in Case 2 waters, which can cause major errors in atmospheric correction algorithms that have been designed for Case 1 waters as water-leaving radiance in the near infrared is frequently assumed to be zero, 5) there are needs for more derived products in Case 2 waters (e.g., chlorophyll a, phytoplankton compositions at the group or species level, CDOM, inorganic and total suspended matter, bottom bathymetry, bottom characteristics, and information concerning the coral reefs and macroalgae (e.g., kelp beds)), 6) since Case 2 waters lie near land, complicating effects of interpreting satellite signals that abruptly shift from land-origin to ocean-origin or vice versa can be problematic, and 7) the horizontal spatial scales of interest in Case 2 waters are much shorter, so higher spatial resolution data are needed, especially when the geometry of the coastline is irregular and complex.  Further, there is great interest in estimating primary productivity and water quality indices from optical parameters in nutrient rich, highly productive coastal waters which are often heavily influenced by anthropogenic effects.  

Several new approaches are being taken to improve determinations of chlorophyll a concentration and to expand the number of optical and bio-optical parameters that can be determined in Case 2 waters.  Again, most satellite ocean color estimates of chlorophyll a have been based on the principles of spectral absorption by pigments and satellite measurements of spectral normalized water-leaving radiance (i.e., ratiometric method), which is transformed through algorithms into chlorophyll a or chlorophyll a plus phaeophytin a concentrations.  However, an alternative method using sun-induced fluorescence takes advantage of the passive (or natural) fluorescence emission of chlorophyll a in the red portion of the visible spectrum at about 685 nm (discussed above in subsection 5.3.6).   Passive fluorescence is especially effective in waters with high chlorophyll a concentration, namely most Case 2 waters (see IOCCG Report 3).   This approach was first tested for remote sensing applications using aircraft-based sensors (e.g., Gower, 1980; Gower and Borstad, 1990).  It has also been suggested to be feasible for Case 1 waters (Babin et al., 1996).  GET BABIN PAPER (1996; INT J REMOTE SENSING, 17, 2417-2448)AND FILL IN SOME MORE ON THIS AND SEE HIS VILLEFRANCHE PAPER.  The basic explanation of this method is that as chlorophyll a concentration increases, the related sunlight –induced fluorescence emission at 685 nm increases.  Note that this method, like other passive remote sensing methods, requires sunlight and cannot be used at night.  Since the whole emission spectrum can move upward or downward not only with changes in chlorophyll, but also with changes in other pigments and optical constituents (e.g., CDOM) and since we are interested in only the variability in the very narrow waveband very near 685 nm, it is necessary to include baseline measurements at one or preferably more wavelengths adjacent to 685 nm.  Then it is possible to relate specific changes in fluorescence emission at 685 nm relative to the established baseline and to infer the desired chlorophyll a signal and concentration.  Ideally, measurements besides those at 685 nm would be made at wavelengths such as 665 and 710 nm surrounding the 685 nm peak.  RICARDO LETELIER PAPER ON THIS ALSO???.  Ocean color satellites including MODIS, MERIS, and GLI are using measurements at 660 and 680 nm CHECK THIS!! (Table 4-??? in last Chapter summarizing characteristics of ocean color statellites) to capitalize on the natural fluorescence effect to determine chlorophyll a concentrations.   

An interesting question is ‘Do the absorption-based (i.e., ratiometric method) and fluorescence-based approaches yield the same information and results?’.  The answer is not surprisingly equivocal, since the two methods are based on such different physical principles.   Let us compare some of the features of  the two methods (see summary in Table 5-1; Table 2 of IOCCG Report 2 (1999)).  The absorption-based method relies upon signals and quantities that are nonlinear functions (i.e., power law dependence discussed above), whereas the fluorescence-based signals are often linear functions of chlorophyll a.  Absorption-based algorithms perform well and with good sensitivity for low chlorophyll a concentrations (remember that water-leaving radiance decreases as chlorophyll a concentration increases), whereas fluorescence-based algorithms give best results for high chlorophyll a concentrations (i.e., for values of chlorophyll a concentration greater than roughly 1 mg/m3).  The complicating influence of CDOM upon retrievals is much less for fluorescence-based algorithms because the method relies upon measurements at wavelengths that are well away from the portion of the spectrum where CDOM is important (in the red portion; remember CDOM absorption decreases rapidly with increasing wavelength).  On the other hand, if one wishes to obtain CDOM information, then some form of an absorption-based method must be used.  The depth to which measurements can be made is much shallower for the fluorescence-based method as red light attenuates at a greater rate with depth (and thus penetrates to only very shallow depths) than blue-green light; thus, fluorescence-based measurements give only very near surface information whereas absorption-based methods provide information to much greater depths (i.e., again about one optical depth).  Atmospheric correction also turns out to be less critical for the fluorescence-based algorithms (IOCCG Report 2, 1999).  

Besides the several physically based differences between the two methods, there are important distinctions that arise from the physiology of the relevant organisms.  Both methods are affected by common biological influences such as pigment composition that varies among the various phytoplankton species (i.e., accessory pigments are of greater importance in some species than in others and of course their associated absorption spectra differ), pigment packaging, and cell size and shape.  The fluorescence method also involves variation in fluorescence efficiency or yield, which is dependent on environmental stresses (like light exposure and nutrients) imposed upon the phytoplankton.  One might expect that there may be some situations where we would expect to obtain very similar results using either absorption-based or fluorescence-based algorithms (i.e., for near surface waters with moderate chlorophyll concentrations).  Active research continues in this area, so the ultimate answer to our original question concerning the information derived from the two methods remains rather open.  It is probably fair to say that even at this point in time we do have definitive guidelines for our choices of one approach versus the other, and pragmatically the two should be viewed as complementary.   Certainly, data derived from the two methods should not be assumed to be equivalent, especially for some purposes such as merging of data sets.  However, from a scientific standpoint, use of both methods may be extremely valuable to answer particular questions since the information content of each is rather unique, since they are based in part upon different phenomena.   More details concerning considerations affecting absorption-based versus fluorescence-based methods are described in IOCCG Report 2 and by Letelier and Abbott (1996) [SEE LETELIER AND ABBOTT 1996.   An anaylsis of chlorophyll fluorescence algorithms for MODIS, remote Sensing of the Environment, 58, 58, 215-223.]

Earlier we listed several reasons why special algorithms and models are needed for Case 2 waters.  These generally relate to special issues that need to be considered for Case 2 waters.  First, the Case 1 problem is comparatively simple and to first order can often be treated as single-variate, meaning for example that we relate a dependent variable such as chlorophyll a to an independent ratiometric quantity (i.e., ratio of water-leaving radiance or remote sensing reflectance at two or more different wavelengths).  However, since several constituents contribute to measured water-leaving radiance in Case 2 waters, it is necessary to include more variables, making this a multi-variate, as well as nonlinear, problem.  Not surprisingly, since we need more information content for Case 2 waters, it is desirable that more wavelengths be used to for the solutions (i.e., more unknowns require more independent equations).   SEE GRACE OCEANOGRAPHY PAPER AND OTHER RELEVANT REFERENCES ON THIS.  A rather nagging issue is that characteristic absorption and scattering spectra for the various Case 2 optical constituents can overlap or nearly coincide, so independence and uniqueness of solutions can be problematic (i.e., papers on this Garver and Siegel versus???).  Thus, the set of governing equations established for the problem needs to be solved simultaneously.  Creation of algorithms for Case 2 waters that can be used universally, that is in any geographic coastal location, is most difficult and at this point nearly impossible because of such great diversity in phytoplankton species compositions, large variations in the composition of CDOM, suspended sedimentary material, and ocean bottom optical properties (i.e., sandy versus coral versus mud) as well as depth.  Furthermore, most of these previously listed quantities vary seasonally and interannually and often on time scales as short as a day or less (e.g., tides, diel cycling, and storm and  hurricane passages as discussed in Chapter 7).  As a consequence of these rather onerous complexities, the algorithms and models that are being developed for Case 2 waters must be far more complicated and sophisticated than their Case 1 counterparts.  Unfortunately, they will also be more difficult to analyze, interpret, and understand.  Nonetheless, if the goal is to accurately depict or model the several optical and physical quantities of interest, there appears to be no simple algorithm or model that will suffice.  Even the atmospheric correction algorithms for Case 1 waters need revision or new formulation (IOCCG Report 3, 2001 and references therein) as mentioned above.  The next paragraphs outlines some of the considerations and approaches for developing algorithms and models that can be specifically applied to Case 2 waters (see IOCCG Report 3 for more details and references as well as reviews in Oceaongraphy HyCODE Issue). 

Forms of data products that are desired for Case 2 problems and applications include IOPs, AOPs, and concentrations of various constituents.  It is important to note that all of the models to be described below are constrained by several factors: 1) inadequate physics in optical models, 2) errors resulting from atmospheric corrections and ocean color sensors (in situ and remote), 3) mismatches in measured spatial areas of in situ and remotely sensed data, and 4) non-concurrent in situ and remotely sensed data.  In most cases, it is desirable if not imperative, that error estimates of key quantities be included in model or algorithm formulation; estimates of such errors are not particularly easy to obtain. 

The first approach for Case 2 algorithms is the familiar empirical ratiometric method that can be written (following IOCCG Report 3, 2001) in a generalized form as

p =  (Rai/Raj) +   




(5-55) 

where p is the physical quantity to be determined (i.e., chlorophyll a, CDOM, beam c, and other IOPs),  Rai and Raj represent the measured radiometric quantity (i.e., Rrs or Lwn), and  , and  are empirical coefficients based on measurements.  As one might expect, it is useful to use multiple wavebands (especially at greater wavelengths to decrease effects of CDOM) in this approach in order to obtain better results for Case 2 waters.  This method is quite simple to employ and to interpret and the computations are quick and straightforward.  Because of its relative simplicity and generally poor global performance, it is best used regionally with large volumes of empirical data.    

The next methods that we consider are called ‘model-based’ and are typically far more complex than the empirical algorithms that rely on comparatively simple regression analyses (i.e., equation 5-55).  These include: semi-analytic or algebraic algorithms or models, nonlinear optimization techniques, principal component method, and neural networks.  We will summarize these briefly below (see IOOCG Report 3 for more details and references as well as HyCODE Oceanograhy reviews by ????).  

We discussed semi-analytical models earlier, with emphasis upon Case 1 water applications.  As one example, Hu (????) has used a semi-analytic algorithm developed by Carder et al. (1999) with SeaWiFS data to estimate distributions of chlorophyll a and absorption by CDOM at 400 nm for Case 2 waters  in the vicinity of the Florida penninsula (Figure 5-20 see p. 59 of IOCCG Report 3).  Comparisons with in situ data were quite good while those obtained with a standard SeaWiFS Case 1 algorithm gave overestimates.  Again, it is worth noting that for Case 2 waters, backscattering coefficients are relatively more important than they are for Case 1 waters.  Also, it is possible to take advantage of relationships between individual spectral IOPs and the concentrations of those constituents that affect them using results based on theoretical models of quantities like Rrs (e.g., Carder et al., 1999; Lee et al., 1996, 1999) CHECK TO BE SURE THIS IS WORDED CORRECTLY -  THE THE CARDER AND LEE REFEREENCES.

The nonlinear optimization method uses a forward model as applied to the top of the atmosphere or the sea surface..  The main principle is to minimize the differences (via a chi-square computation; IOCCG Report 3, 2001) between values computed with a model and measured radiances.  The method involves several iterative calculations that continue until a predetermined threshold is satisfied.  The method is capable of reproducing nonlinear effects and does not require pre-defined data sets.  The nonlinear optimization method is reliant upon a forward model that gives realistic, representative information.  Work using this method has been reported by Roesler and Perry (1995), Lee et al. (1996, 1999), and Garver and Siegel (1997).  Several parameters can be obtained using this approach.  Some of the aspects of the method that need to be considered include: 1) there are often correlations between quantities like chlorophyll a and total suspended matter that can lead to ambiguities in their estimations, 2) multiple solutions are possible, so conditions need to be applied to ensure that the proper solution is selected, 3) the method is dependent upon initial ‘guesses’ of solutions, and 4) the method requires an iterative computing scheme that can consume considerable computing time.  An example of results obtained with a nonlinear optimization method applied to CZCS data collected over the North Sea is shown in Figure 5-21 (Doerffer and Fischer, 1994) ; SEE IOCCG REPORT 3, P. 62).   

Principal component analysis (PCA) has been used for several oceanographic problems (e.g., see Laws BOOK).  An interesting use of principal component analysis for ocean color considers pertinent variables for both the atmosphere and the ocean.  Remember that atmospheric correction algorithms are quite challenging for Case 2 waters, so this approach has considerable appeal as variable atmospheric conditions can be applied simultaneously to the ocean.  This is basically an inversion approach that starts with radiances at the top of the atmosphere as measured by the ocean color imager.  Derived variables include water constituents such as chlorophyll a, CDOM, inorganic suspended particles, and the optical properties of the atmosphere.  PCA uses several wavelengths and multi-variate linear regression analyses.  Radiative transfer models are used to produce radiance values at the top of the atmosphere that relate to specific variations in the water constituents and atmospheric properties.  This method involves linear functions, so the algorithm is simple and stable.  Also, it can be implemented quite easily and computer run times are short.  Importantly, a separate, independent atmospheric correction algorithm is unnecessary so the method can be optimized for specific regions or seasons or even run in a time series mode.  An example of a PCA, multi-variate quasi-linear regression method application is shown in Figure 5-22 for a MOS-IRS ocean color satellite scene in the German Bight (USE FIGURE 3.9 ON P. 67 OF IOCCG 3).  The derived products for this example include color composition, chlorophyll a, backscatter at 550 m representative of sediments, CDOM, and aerosol optical thickness.  The model used for this result is based on a generic three-component model (adapted from Prieur and Sathyendranath, 1981, and Sathyendranath et al., 1989).  

The final technique we consider is the neural network method, which entails inversions involving spectral reflectances and concentrations of the various constituents of interest (IOCCG Report 3, 2001).  The general scheme (see flow chart in IOCCG Report 3, Figure 3.11) is to use large volumes of data in order to essentially ‘train’ the model, that is to develop a large number of relations (including computation of coefficients) among the input and output variables using minimization techniques.  Linear and nonlinear (e.g., polynomial)  relationships can be employed as well as radiative transfer model simulations.  One issue of concern is that multiple solutions within error bounds are possible.  Some of the neural network methods are reviewed in IOOCG Report 3 (2001).  An interesting application of a neural network analysis by Tanaka et al. (1998) using OCTS  ocean color satellite data from the Yellow Sea is shown in Figure 5-23 (IOCCG #3, p. 69, Fig. 3.10).   The distributions of chlorophyll a, CDOM, and suspended sediments are shown in this figure.  Some of the advantages of the neural network approach include: 1) the neural network can employ radiative transfer models, 2) processing is fast, so the neural network method can be used to process ocean color satellite data in real-time, and 3) fidelity of the model and observations should be high.  However, preparation of a neural network is expensive and its design and training necessitate much experience.  

A summary comparing these various methods and algorithms is presented in Table 5-2 (p. 74 of IOCCG Report 3).  We can conclude that models and algorithms for Case 2 waters need to be more complex than their Case 1 counterparts.  More spectral bands are needed to retrieve more parameters and hyperspectral measurements and models are key.  The ability to develop accurate and robust Case 2 models and algorithms is highly dependent upon large volumes of data, especially spectral IOPs in many different oceanic domains.  Models for Case 2 waters remain as major areas of challenge for bio-optical oceanography. 

5.3.8  Observational Needs for Models and Theories

The instrumentation and methods for obtaining in situ and remotely sensed ocean color at a large number of wavelengths across the visible (and into the infrared) were discussed in the previous two chapters.  These are largely directed toward studies in Case 2 waters and are critical for developing and testing the Case 2 algorithms and models described above. In terms of sampling strategies, we clearly need in situ long-term time series at many locations as well as large numbers of data collected over broad regions of the world ocean.  The global ocean observing system will necessarily include numerous autonomous sampling platforms (i.e., moorings, AUVs, gliders, etc.) that will be capable of vastly increasing data volumes that can be used for developing and testing ocean color theories, models, and  remote sensing algorithms.  It is also likely that regional ocean color models and algorithms will need to be developed as universal algorithms cannot be expected to suffice, especially in highly diverse and variable Case 2 coastal environments.  Finally, since ocean color data sets are often revised because of new calibration information and development of new algorithms, readers are encouraged to become familiar with documents published by the IOCCG and the NASA Technical Memorandum Series to be familiar with evolving ocean color algorithms and models.       

EMMANUEL BOSS PAPERS ON PARTICLE SIZE DISTRIBUTIONS??  PAPER WITH US OUT OF CMO AND OTHERS WITH TWARDOWSKI CITED IN GRACE’S INDIA PAPER.

5.4 Bio-optical Primary Producivition Models 

(See Dickey/Falko paper/Bidigare/Falko/Wales book reviews by B2 and others?)

Primary production, as introduced in Chapter 2, concerns the synthesis of organic matter from inorganic compounds including CO2 and water.  Sometimes the rate of production of plant material is called primary productivity.  Planktonic primary production is described in different forms.  Gross primary production, Pg, is defined as the rate of photosynthesis, which is not reduced via losses through excretion or respiration; net primary production, Pn, refers to gross primary production after subtracting losses due to respiration by phytoplankton; and net community production, Pnc, is net production after subtraction of losses due to respiration by heterotrophic microorganisms and metazoans.  Factors related to primary production in general include exposure to light (PAR, which is again essentially visible light; but spectral quality is also important), extant phytoplankton biomass, phytoplankton speciation and pigmentation of particular species of phytoplankton, phytoplankton physiology (i.e., ability to adapt to light fields: photoadaptation for low light and photoinhibition for high light), plant nutrients, temperature, vertical structure of density and local physical mixing and advective processes, and losses through respiration, excretion, and grazing.  Models that include all of these effects are necessarily complicated and their parameterizations are not straightforward for a variety of reasons, but principally because of the great diversity of phytoplankton species and their widely varying characteristics.  Despite these daunting challenges, bio-optical primary production models that use a limited number of biological and optical variables have proven to be quite effective when model results are compared with more traditional approaches including the 14C incubation method (e.g., Lalli and Parsons, 1993).   Next, we introduce a few bio-optical models of primary production. 

Most bio-optical models of primary production, denoted here in general as P(x,y,z,t), utilize the following general form (i.e., Sathyendranath and Platt, 2001)

P(x,y,z,t) = Chl(x,y,z,t) F[E(x,z,t)]     (mg C m-3 h-1)


(5-56)

where Chl(x,y,z,t) is the phytoplankton biomass indicator in the form of chlorophyll a concentration (mg chla m-3), F[E(x,z,t)] indicates the response function that mathematically represents the photosynthetic response (in mg C m-3 h-1), or the biomass-specific, photosynthetic response (in [(mg C m-3 h-1)/(mg Chl a m-3)]) of the phytoplankton to the available light, E (usually in units of Ein m-2 s-1; note that in the past, and still sometimes today, the symbol I is used instead of E).  The explicit dependence of P, Chl, and E upon three spatial dimensions (x,y,z) and time (t) is indicated in equation 5-56.  For many problems and analyses, only the vertical dimension is considered since horizontal gradients are often smaller than their vertical counterparts and the temporal change is not considered or steady conditions are presumed.  However, we shall see that temporal evolution and horizontal variability are indeed the essence of several problems discussed in Chapters 6 and 7.  Major assumptions of equation 5-56 are that 1) light and phytoplankton biomass are the key factors affecting primary production and 2) other controlling factors (e.g., temperature, nutrients, and phytoplankton physiology) can be effectively incorporated into the response function F.   

Several different functional forms for primary production as a function of light (called P versus E curves or previously P versus I curves) have been forwarded and analyzed in great detail as reviewed by Bidigare et al (1992) and Behrenfeld and Falkowski (1997a,b).   The most general graphical functional description (see Figure 5-24) depicts three sequential stages or regimes as light increases (e.g., see Parsons and Lalli, 2001; Behrenfeld et al., 2002): 1) light-limited conditions with a  nearly linear increase in production with available light, 2) light-saturated conditions when further increases in light have no effect on production (production remains constant), and 3) photoinhibition with production decreases.  As indicated in Figure 5-24, for the first regime, P increases approximately linearly to a maximum rate of photosynthesis called Pmax, or the assimilation index, when a light value of E = Ek, called the light saturation parameter of photosynthesis, is reached.  In this relatively low light regime (below saturation), photosynthesis is dependent on the functional PSII centers and their average functional absorption cross-section (PSII; see Falkowski and Raven, 1997).  The slope of the line from the origin to the point where P = Pmax is defined as =  P/E or the rate of light limited photosynthesis.  Figure 5-24 indicates Pg, Pn, Pmax, and =  P/E.   Simple equations for Pg and Pn (following Lalli and Parsons, 2002) are given in the forms

Pg = Pmax E/(KE + E) 
 (mg C m-3 h-1)


(5-57)

and 





Pn = Pmax (E – EC)/[KE + (E – EC)]
(mg C m-3 h-1)

(5-58)

where E is the ambient light (PAR) exposure for the phytoplankton, KE is defined as the half-saturation constant with a value of light intensity taken at the point where P = Pmax/2, and the term (E – EC) represents the ambient light less the compensation light intensity (note, respiration and compensation were discussed in Chapter 2).   Half saturation values typically range from roughly KE  = 10 to  50 Ein m-2 sec-1.   Note that photoinhibition is not considered for these two expressions, which are often described as rectangular hyperbolic functions.  These functions take the general form y = x/(1+x); so for small x (1>>x), the relation is approximately linear (y ~ x) and for large x, y approaches a constant value of 1.   This functional form is also known as a Michaelis –Menton function, which is commonly used in biological and ecological models.  When chlorophyll-specific formulations are used, Pmax and  are replaced with (Pmax Chl-1) and (Chl-1, respectively.  Some ranges of values for (Pmax Chl-1) and (Chl-1 are given for a variety of ocean regions and environmental conditions (temperature and nutrient levels) are in Table 5-3 (after Lalli and Parsons, Table 3.2, p. 57).  In the saturation stage with no further increase in photosynthesis for additional irradiance, photosynthesis (at value of P = Pmax) is limited by the carbon fixing capacity of so-called dark reactions, being a product of Calvin cycle enzymes and their activity (e.g., see Falkowski and Raven, 1997).  The parameter indicating saturation of irradiance, Ek, can be expressed as Ek = Pmax /(as can be evaluated from P versus E curves (i.e., Figure 5-24)).  When primary production decreases following further increases in E past the saturation stage (i.e., for E>EK), photoinhibition, which is caused by physiological processes such  as shrinkage or changes in chloroplasts, becomes important and needs to be represented mathematically in some functional form.   Next, we describe a few of the bio-optical primary production models, beginning with relatively simple formulations and moving toward those with greater complexity and more parameters.

Ryther and Yentsch (1957) forwarded the following model that enables estimation of depth-dependent daily rates of net photosynthesis Pn, for phytoplankton with non-uniform vertical distribution in the water column:

Pn(z)  = Rd Chl(z) (Pmax Chl-1)
       (mg C m-3 d-1)

(5-59)

where Rd is a depth-dependent relative photosynthesis parameter (dimensionless) that depends on total daily surface solar insolation and the fractional light depth.  This model does not include photoinhibition effects.  Another formulation for net primary production was later given by Jassby and Platt (1976) (as based on another by Webb et al., 1974), whose equation includes commonly measured P-E parameters:

Pn(z)  = Chl(z) (Pmax Chl-1) (1 - e-QPAR(z)/EK) 
    (mg C m-3 h-1)
(5-60)

where QPAR(z) is downwelling PAR at depth z (essentially broadband Ed(z)) and the other parameters were defined earlier.  This formulation was modified by Platt (1980) to account for the effects of photoinhibition (using exponential factors), and net primary production is modeled as  

Pn (z)  = Chl(z) (Ps Chl-1) (1 - e-a) e-b
    (mg C m-3 h-1)

(5-61)

where a = [ Chl-1  QPAR(z) (Ps Chl-1)-1], b = [(chla) QPAR(z) (Ps Chl-1)-1] andis the chlorophyll-specific photoinhibition parameter, in [(mg C) (mg Chl a–1 h–1 (Ein m-2 s–1) –1], and Ps Chl-1 is the chlorophyll-specific maximum rate of photosynthesis without the effects of photoinhibition.  

One of the most widely used models for net primary production was formulated by Jassby and Platt (1976) and is called the hyperbolic tangent model:

     Pn (z)  = Chl(z) (Pmax Chl-1) tanh[QPAR(z)/Ek]
 (mg C m-3 h-1)

(5-62)

where the form of the hyperbolic tangent is tanh x = (ex –e-x)/( ex +e-x)  CHECK THIS TO BE SURE I HAVE THIS RIGHT. ALSO CHECK FORM OF HYPERBOLA AS INDICATED ABOVE FOR FORMULA 5-58; SEE MY CRC HANDBOOK. 

A model incorporating parameterizations for the depth-dependent quantum efficiency of photosynthesis (also called the effective quantum yield for carbon assimilation?? CHECK THAT THIS CORRECT; THIS IS SIGELE AND SORENSEN’S c WHICH APPEARS TO BE THE SAME QUANTITY; MAY WANT TO ASK B2 TO BE SURE ON THIS), c(z), and the spectrally weighted chlorophyll-specific phytoplankton absorption coefficient, <aph> Chl-1(z), was formulated by Kiefer and Mitchell (1983) for gross primary production as 

  Pg(z)  = c(z) (1.2 X 104) QPAR(z) Chl(z) [<aph> Chl-1(z)]
 (mg C m-3 h-1)

(5-63)

[CLARIFY IF THIS IS NET OR GROSS OR WHAT!  LOOK AT B2 PAPER]

This model was conceived for determining gross primary production under steady-state conditions.  Also, the parameterization of c(z) takes the form of a rectangular hyperbolic function (described above) to represent the dependence on growth irradiance:

c(z) = max K /[ K + QPAR(z)]
(mol C Ein-1)

(5-64)

with max (in mol C Ein-1) being the maximum quantum efficiency for photosynthesis and K the irradiance (in Ein) where quantum efficiency takes a value of max/2.  This model was designed for white light, PAR.  

The Kiefer-Mitchell (1983) model was reformulated by Bidigare et al. (1987) to include spectral dependence in both the underwater light field and the absorption properties of the phytoplankton.  The Bidigare et al. (1987) model can be written as 

Pg (z) = c(z) (1.2 X 104) AQph(z)  
(mg C m-3 h-1)


(5-65)

where the constant coefficient 1.2 X 104 converts moles of carbon to milligrams of carbon and AQph(z) (sometimes symbolized as Qphar(z)) is the depth dependent, integrated quanta (PAR using wavelength range of 400 – 700 nm) absorbed per unit volume and per unit  time  by the phytoplankton population or 

AQph(z) = Int (400-700nm) Qd(,z)  aph(,z) dz   (Ein m-3 s-1) 

(5-66)

where Qd(,z)  is quantum downwelling irradiance and aph(,z) is the phytoplankton absorption coefficient.  A spectral reconstruction method developed by Bidigare et al. (1987) enables determination of aph(,z) using pigment concentrations associated with  in vivo absorption properties measured with the high-performance liquid chromatography (HPLC) method.  Thus, 

aph(,z) = SUMMATION i=1 to N  ai*() Ci(z)


(5-67)

where ai*() is the weight-specific absorption coefficient for pigment group i and 

Ci(z) is the concentration of the pigment group i (from HPLC measurements) at depth z.  Bidigare et al. (1987) also forwarded the following expression for quantum efficiency of photosynthesis, c(z),   

c(z) = max (Pmax/max/[(Pmax/max + AQPAR(z)]
(mol C Ein-1)
(5-68)

This particular model is summarized in terms of assumptions, basic and simplified equations, and required measurements by Waters et al. (1994) and has been applied in various forms with good success (i.e., see Smith et al., 1989 L and O, 34(8)??).  Several different mathematical representations have been used for primary production models for various applications as discussed by Bidigare et al. (1987). 

As a reminder, the absorption-based models (e.g., Kiefer and Mitchell, 1983, and Bidigare et al., 1987; equations 5-63- 5-68) approximate gross production, Pg, whereas the P versus E models (e.g., equations 5-59 – 5-62) are used for determining a quantity closely related to net production (again, see Figure 5-24 for clarification).  Further, 14C bottle incubation determinations are indicators of net community production (phytoplankton-zooplankton interactions in bottles).  Therefore, caution should always be taken when comparisons among these various models and measurements are attempted.

A variety of input parameters and data are used for bio-optical models as discussed by Bidigare et al. (1987).  These include: spectral and broadband or wavelength-integrated PAR light distributions with depth (i.e., either directly measured or inferred from incident solar radiation and optical/bio-optical models), chlorophyll a and other pigment concentrations (e.g., from HPLC measurements), phytoplankton absorption properties including phytoplankton absorption coefficients, aph, and quantum efficiencies, c.   A major weakness of bio-optical primary production models concerns uncertainties introduced by lack of concurrent information for both aph and c to go along with relatively well measured chlorophyll a and light fields.  Again, neither aph nor c is constant in space or time because of phytoplankton community structure changes and varying light and nutrient stresses, and thus errors and biases are introduced if these are taken to be constants.  This high degree of variability in c and problems posed for modeling c are discussed in considerable detail by Sorensen and Siegel (2001), who used data sets collected in the Sargasso Sea and tested different primary production models.  Nonetheless, information provided from ship-based data sets on a regional and seasonal  basis (idea of biogeographical provinces, Longhurst AND Sathyendranath REF HERE) may be used to reduce uncertainties, but even these should still be used with caution.  Our best in situ estimates of variability of c have come from measurements using the fast repetition rate fluorometer; also, absorption measurements are improving with development of new hyperspectral ac-meters (both types of instrumentation were described in Chapter 3).  Again, estimates based on data or models set up for different time and space scales as well as methodologies can lead to difficulties for intercomparisons and interpretations, not to mention discontinuities in time and space. 

A useful summary of primary production models has been provided by Behrenfeld and Falkowski (1997a) and Behrenfeld et al. (2002) as follows: 1) wavelength-resolved models, 2) wavelength integrated models, 3) time-integrated models, and 4) depth-integrated models (see Table 5-4 after Behrenfeld and Falkowski’s (1997a) Table 1 ALSO USE NICE EXPLANATION BOX IN BEHRENFELS ET AL. P. 159 OF THE WILLIAMS WALES BOOK).  All of the models can be generalized in forms involving depth-integrated primary production, P, to surface chlorophyll a, Chlasurf (a proxy for surface phytoplankton biomass), euphotic layer depth, Zeu, an irradiance-dependent function F, daylength, DL, and a photoadaptive variable called PoptB.   PoptB is defined as the maximum carbon fixation rate within the water column (units are mg C (mg Chl a) -1 h-1) and is the optimal carbon assimilation efficiency.  Interestingly, Behrenfeld and Falkowski (1997b) have suggested that based on their analyses, uncertainties in annual global primary production are due primarily to input biomass (chlorophyll a concentration) and PoptB  rather than specific model formulations.

Bio-optical models of primary production are especially attractive for satellite-based and autonomous sampling platforms like moorings, particularly because it is possible to measure or infer key model input parameters from sensors placed on these platforms (e.g., Lewis, 1992 Falko and Woodhead book chapter).  Satellite-based observations and models provide our best opportunity for assessing primary production at the global scale (e.g., Behrenfeld et al., 2002) while high temporal resolution measurements from moorings enable determinations at time scales as short as an hour or less for time periods of many years and with depth structure of key variables (e.g., Dickey and Falkowski, 2002).  A description of some of the primary production models for satellite-based measurements of chlorophyll concentration has been presented by Behrenfeld and Falkowski (1997b), who used a data set of 14C-based primary production measurements (total of 11,283 data at 1,698 stations) to establish key parameters and variables required to produce accurate daily depth-integrated primary production through the euphotic layer.    The ranges of depth integrated (through the euphotic layer depth, z = Zeu) chlorophyll a and primary production were 3 to 437 mg Chl a m-2 and 30 to 8543 mg C m-2 d-1.  In one case, they used a primary production model for the euphotic layer (determining primary production called Peu) that includes a temperature-dependent PoptB.  PoptB was determined using a scaling function for each profile of primary production.  This model, called the PoptB model,  has several similarities to earlier models (e.g., Ryther and Yentsch, 1957; Smith and Baker, 1978; Lewis et al., 1987; Balch and Byrne, 1994).  Earlier, Ryther and Yentsch (1957 took to be PoptB equal to a constant value of  3.7 mg C (mg Chla)-1, but noted that this was the weakest assumption of their model.  Other researchers developed temperature and nutrient dependencies for PoptB formulations.  Clearly, several environmental and biological (e.g., taxonomic, species) factors, which are not easily quantified, affect PoptB variability (see Behrenfeld et al., 2001).    

The PoptB model of Behrenfeld and Falkowski (1979b) is written in the form

Peu = 0.66125 PoptB [E0/(E0 + 4.1] Zeu Chlopt Dirr       (mg C m-2 d-1)    
(5-69)

where E0 is the surface irradiance, Zeu is again the euphotic layer depth, Chlopt is the chlorophyll a concentration at the depth of PoptB, and Dirr is the photoperiod in decimal hours.  Global estimates of annual primary production produced by Behrenfeld and Falkowski (1997b) are illustrated as maps in Figure 6-?? of the next chapter (after Behrenfeld and Falkowski’s Figure 9) for annual and four seasonal distributions.  They concluded that 1) accurate determinations of PoptB, is important for good estimates of primary production, 2) PoptB models should focus on temporal and horizontal spatial variability opposed to vertical variability, and 3) more work needs to be done to fully characterize PoptB.   They also indicated that improved mathematical formulations and better representations of the light absorption and absorption are likely less important than increased knowledge of phytoplankton ecology and photophysiology (also see Behrenfeld et al., 2002) as affected by environmental factors that can dictate instantaneous growth conditions.  Behrenfeld et al. (2002) elaborate on the needs for light-nutrient models for PmaxB and describes the ‘PhotoAcc’ model for PmaxB (Behrenfeld et al., 2001).  The concept is that  PmaxB can be modeled provided there are good descriptions of specific growth conditions that cause chlorophyll changes relative to Calvin cycle capacity, CCcap.   Light and photoacclimation are also important influences.  The light experienced by a given cell depends on incident light at the surface, light attenuation (spectrally), and mixing depth as well as water motion (e.g., advection and turbulence) in the upper water column.  Data collected during the Atlantic Meridional Transect (AMT) studies were used for parameterizaton of PhotoAcc and light history was interpreted as an effect of nutrient stress.  The equations for the PhotoAcc model are given in Table 7.1 of Behrenfeld et al. (2002).  The model was tested using AMT and data collected off Bermuda.  PhotoAcc was used to make global estimates using SeaWiFS ocean color data sets for surface chlorophyll and PAR as described by Behrenfeld et al. (2002; see their Plates 7.1-7.4).  MAYBE USE THESE IN CHAPTER 6 ALSO???  The concept of defining biogeographic provinces (e.g., Longhurrst and Sathyendranath REFS here) according to regions and seasons may be useful in constraining values of chlorophyll-normalized, light saturation rate of photosynthesis, PmaxB, which would be helpful as PoptB is a function of PmaxB.  In principle, ship-based photosynthetic (e.g., for PoptB and PmaxB) and environmental (e.g., for temperature, nutrients, community structure) data sets collected on a regional and seasonal basis may be used to reduce model uncertainties.  

Recently, a blind (participants not identified in report) intercomparisons of twelve depth-integrated primary production models, which were designed for use with satellite data sets, were performed (Campbell et al., 2002).  Input data included surface chlorophyll a, PAR, geographic location and day of year.  The best performing models gave results within about a factor of two of simultaneous 14C-based measurements collected at 89 sites in varied oceanic regions.  As indicated by the authors of this work, the value of the exercise is somewhat diminished since detailed  comparisons were not possible because of the condition of anonymity imposed upon the study; future open information exercises should be valuable.

Another class of primary production models uses in situ natural fluorescence and light measurements (e.g., Kiefer et al., 1989; Chamberlin et al., 1990).  A flow chart for this type of model is presented in Waters et al. (1994).   Both absorption-based and natural fluorescence-based model determinations of primary production using mooring data for input were compared with traditional and 14C-based measurements in the Sargasso Sea by Waters et al. (1994).   Readers interested in more detailed accounts of primary production models are directed to reviews by Bidigare et al. (1987), Behrenfeld and Falkowski (1997a,b), and Behrenfeld et al. (2002).  Results based on some of the models described here are discussed in Chapter 6.   
ANY SPECIAL PP MODELS FOR CASE 2

5.5 Summary of Theoretical and Modeling Challenges 
WHEN I READ NEXT TIME, THINK ABOUT ADDITIONAL CHALLENGES!
There remain many challenges for investigators developing theories and models for bio-optical oceanography.  For example, our fundamental understanding of oceanic light scattering is still limited, especially in regard to scattering phase functions and scattering  at very small forward angles and near 180o in the backward direction.  Again, this results in part from lack of data, but also because of uncertainty in even the relevant physics in some cases (REVIEW PAPER BY MARLON ON THIS AS REFERENCE AND ADDING SOMETHING FROM THAT HERE).  We still understand little about the optical effects of bubbles and ocean white caps.  Interdisciplinary studies involving physical and bio-optical and optical oceanographers are essential for this problem and many others.  In particular, we need to understand physical and chemical environmental factors and processes on a broad range of time and space scales in order to begin to ascertain how they bear on many of the problems of interest for bio-optical oceanography.  So, improved physical and chemical models, especially for the shallow coastal ocean and for accurately depicting and predicting major episodic events (e.g., hurricanes, typhoons, internal solitary waves) on all three spatial scales and in time, are vital to progress in bio-optical oceanography.  

The problem of inverting IOPs from AOPs is also daunting, most especially for Case 2 waters.  Progress in making radiative transfer models accessible for bio-optical problems has been dramatic, but even more work is warranted as new opportunities for applications (i.e., ecosystem and biogeochemical models) become evident.  The very practical problem of determining a large number of optical parameters from remote sensing platforms (satellites and airplanes) in Case 2 waters is gaining increasing attention as hyperspectral observations are becoming more common.  The confident use of optical information for many applications, such as primary production, red tides, and ecology among others, requires robust theoretical bases and accurate models.  Prediction and soundly reasoned mitigation schemes will rely on reliable bio-optical data sets and models.  Data assimilation modeling represents a natural means for liking observations and models.  Fortunately, considerable progress in interdisciplinary data assimilation modeling is being made (e.g., SEE appendix ?? and Dickey JMS).  It seems imperative that future research will need to be conducted with theoreticians, modelers, and observationalists as equal partners

5.6 Other Stuff to Consider for Chapter

CHECK WHERE I DISCUSS THE INVERSE VERSUS THE DIRECT OR FORWARD PROBLEM AND REFER TO NICE ILLUSTRATION IN BOHREN AND HUFFMAN ON THIS IN THEIR CHAPTER 1.  THIS MAY BELONG IN DTA ASSIMILATION AND INVERSE METHODS INTRODUCTION??

SATHYENDRANATH AND PLATT APPLIED OPTICS PAPER ON ANALYTIC MODELS OF OCEAN COLOR FOR GLOBAL OCEAN -  SEE THIS FOR NEXT TIME THROUGH CHAPTER.

Also, see review papers in Villefranche Volume and Ocean Optics Tutorials

NEURAL NETS FOR COLOR RETRIEVALS BY ZGANG ET AL. IN JGR 108(c90) PAPER NUMBER 2.

DISCUSS GARVER AND SIEGEL AND SIEGEL ET AL PAPERS.  MODIFY WHAT WRITTEN ABOUT BB VARIABILITY WRT TO CHL.  ALSO SEE OTHER PAPERS THAT USE RETRIEVALS FOR BB, CDM ETC.  CARDER PAPERS PLUS OTHERS?  STRAMSKA ???

LONGHURST ET AL. PAPER ESTMATING GLOBAL NET PRODUCTION USING CZCS J. PLANKTON RES., 17, 1245-1271  MODEL PART HERE IN CHAPTER 5.  MAYBE RESULTS IN FIRST PART OF CHAPTER 6?

NEXT TIME TRHOUGH – CHECK ON INCLUSION OF ECOSIM/SEE OCESANOGRAPHY VOL. 14(3) PAPER BY BISSETT ET AL., 2001; ESPECIALLY P. 49 AND ELSEWHERE.  CHECK ON EMAILS FROM PAUL AND CURT MOBLEY/MAYBE BELONGS MORE IN CHAPTERS 6 AND 7? SE BISSETT FOLDER PAPERS.  MAYBE JUST INDICATE HERE THAT THIS TOPIC IS COVERED IN CHAPTERS 6 AND 7?

PRODUCTION MODELS FOR CLIMATE RESEARCH BY PLATT AND SATHYENDRANATH, JGR, 96(c2), 2585-2592. SEE THIS FOR NEXT READ.

SIEGERL ET AL. CDOM MODEL PAPER GOOD FOR NEXT READ: JGR, 107(C2), PAPER 21, 2002.

MODEL FOR INVERSIONS BY GARVER AND SIEGEL, JGR, 102(C8), 1997, 18607-18,625.

For Microbial foodweb stuff, see list of references that Craig Carlson gave me in email 3/6/2003 in Papers/Bio-optics Book folder on email.

EMMANUEL BOSS PAPERS ON PARTICLE SIZE DISTRIBUTIONS??  PAPER WITH US OUT OF CMO AND OTHERS WITH TWARDOWSKI CITED IN GRACE’S INDIA PAPER.  Also Amanda Briggs paper

Optical Measurements as Proxies

Siegel referred to Loisel GRL, 2002; optical backscatter to POC

Iglesias and Rodriguez GBC 2002: Coccolithophores remote sensing

Lee et al., pCO2 (via SST) from space:  Nature 1998, paper

     Beam c  : A variety of applications ranging from determinations of suspended sediment volume to phytoplankton biomass and productivity to particulate organic carbon (POC).  

Proxy Measurements from In Situ and Remote Sensing Using Optics (DIC, POC; Emmanuel Boss; Siegel and Carr poster??))

Atmospheric Correction Section: see http://seawifs.gsfc.nasa.gov/SEAWIFS/TEACHERS/CORRECTIONS/

PUT PROXY MEASUREMENTS HERE: FITS WITH EMPIRICAL MODELS AND COLOR SATELLITE STUFF BETTER HERE.

Put here with OSSE’s etc. using stuff from JMS paper

SEE JGOFS BOOK ABOUT MODELS FOR CARBON AND ECOSYTEMS

FOR SAMPLING SECTION:  SEE UWE’S NICE POWERPOINT SEVERAL GOOD POINTS AND NICELY SUMMARIZED.  USE FOR ANALOGOUS DESCRIPTIONS  FOR OTHER PLATFORM TYPES.  COMPARE AND CONTRAST.

SEE OSCHLIES TALK ON MODELS DC JGOFS  NICE EXAMPLES OF SIMPLE TO COMPLEX MODELS

HUMAN DIMENSION IN MODELS: SEE BARRIEN MOORE
Sampling strategies and experimental and observational system design considerations are discussed in Chapter 4.  

THERE CAN ALSO BE A BIOLOGY THEME ;  THAT WOULD FOCUS ON LIGHT UTILIZATION BY ORGANISMS: MAINLY PHYTOS, BUT ALSO ZOOS AND HIGHER TROPHIC LEVELS AS WELL – WHAT MODELS CAN DO FOR US.

PP MODELS

BIOLOGICAL PUMP AND BIOGEOCHEMICAL MODLES

PENETRATIVE COMPONENT AND COUPLED PHYSICAL-BIO-OPTICAL MODELS

ANOTHER THEME IS SYNTHESIS OF DATA

ANOTHER IS USE OF MODELS FOR DESIGNING EXPERIMENTS AND ADAPTIVE SAMPLING

A FINAL THEME COULD BE PREDICTION – USING DATA ASSIMILATION

CAN BE OTHER STUFF AS WELL. 

Talk about how simple relation of IOPs and AOPs work and what the approximate limits of validity may be.  STUFF LIKE EQUATIONs IN IOOCG 3.  on pages 31, 83, 86 

FROM TONY BUSS.OCEANS PRESENTATION:

ENSO:  DANIELLA TURK, RAGU’S AND JIM CHRISTIANS MODEL RUNS

OSCHLIES AND GARCON MESOSCALE MODEL RUNS WITH AND WITHOUT TO SHOW SENSITIVITY FOR ECOSYSTEM AND BIOGEOCHEM AND BIO-OPTICS

NEED MODELS AS PEOPLE CONTEMPLATE OCEAN ENGINEEERING SOLUTIONS:  IRON ENRICHMENT AND CO2 SEQUESTRATION IN OCEANS.  CAN ORGANISMS ADAPT?  SOME BETTER SUITED THAN OTHERS: LIKELY THOSE THAT LIVE IN AREAS OF LARGE RANGES OF TEMP ETC. BUT DEEPER ORGANISMS COULD BE IN MORE JEOPARDY.  MODELS GOOD TOOL, BUT NEED TO BE ABLE  TO DEMONSTRATE THEY WORK FOR PRESENT DATA!!!

NEEDS FOR NESTED APPROACH: COASTAL AND MARGINAL SEAS AND OPEN OCEAN.

MODELS TO SIMULATE OCEAN RESPONSE TO DUST STORMS

References:

Mobley

Presiendorfer

Zaneveld papers

Gordon papers

Old SPIE Ocean Optics Papers

++++

Following is from Oceanography: Dickey, 2001:

Data Synthesis and Models (In situ and remote, interdisciplinary, scale spanning)

OSSEs

THIS GOES INTO APPENDIX ON SAMPLING

Sampling: Ozone Hole John Furman of British Antarctic Survey found ozone hole rapid increase in 1985; NASA said BS that is instrument sucked.  NASA later withdrew criticism as they had been  neglecting high and low values: check into this, verify, and cite in sampling some place!!! 
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Mie Theory (Which book? Classic/Stamnes/Shifrin; SEE SEELYE CH 4 ON RADIATIVE TRANSFER/MIE ETC. IN HIS CHAPTER 4

5.4 )

5.4.1 Purpose of Theory

5.4.2 Basic Equations

5.4.3 Examples of Applications

5.4.4 Strengths and Weaknesses of Theory

Summary
